NumPy 教程 之 NumPy 高级索引 8

简介: NumPy高级索引包括整数数组索引、布尔索引及花式索引,允许访问数组中的任意元素并执行复杂操作。花式索引通过整数数组定位元素,不同于切片,它始终复制数据到新数组。

NumPy 教程 之 NumPy 高级索引 8

NumPy 高级索引

NumPy 比一般的 Python 序列提供更多的索引方式。

除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。

NumPy 中的高级索引指的是使用整数数组、布尔数组或者其他序列来访问数组的元素。相比于基本索引,高级索引可以访问到数组中的任意元素,并且可以用来对数组进行复杂的操作和修改。

花式索引

花式索引指的是利用整数数组进行索引。

花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。

对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素,如果目标是二维数组,那么就是对应下标的行。

花式索引跟切片不一样,它总是将数据复制到新数组中。

二维数组

1、传入顺序索引数组

实例

import numpy as np

x=np.arange(32).reshape((8,4))
print(x)

二维数组读取指定下标对应的行

print("-------读取下标对应的行-------")
print (x[[4,2,1,7]])
print (x[[4,2,1,7]]) 输出下表为 4, 2, 1, 7 对应的行,输出结果为:

[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]
[24 25 26 27]
[28 29 30 31]]
-------读取下标对应的行-------
[[16 17 18 19]
[ 8 9 10 11]
[ 4 5 6 7]
[28 29 30 31]]

目录
相关文章
|
索引 Python
Numpy 高级(三)
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 NumPy 高级,学习之前需要学习:NumPy入门
673 0
Numpy 高级(三)
|
6月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 1
NumPy高级索引使用整数数组、布尔数组等来访问数组元素,支持复杂操作与修改。例如,整数数组索引可选取特定位置的元素: ```python import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print(y) ``` 输出: `[1 4 5]`.
36 5
|
5月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 5
NumPy高级索引包括整数数组索引、布尔索引及花式索引,扩展了基本索引的功能,允许访问和操作数组中的任意元素。其中,**布尔索引**利用布尔数组来选取符合条件的元素,例如通过比较运算筛选特定值。示例展示了如何使用`~np.isnan(a)`来排除`NaN`值,输出结果为所有非`NaN`元素: `[1. 2. 3. 4. 5.]`.
41 3
|
5月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 4
NumPy 提供了高级索引方式,包括整数数组索引、布尔索引及花式索引。布尔索引可通过布尔数组筛选出满足条件(如大于某个值)的元素
28 3
|
6月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 3
NumPy高级索引包括整数数组索引、布尔索引及花式索引,能访问并操作数组中的任意元素。例如,使用整数数组索引可以从多维数组中选取特定位置的元素。对于一个4x3数组`x`,通过定义行索引`rows`和列索引`cols`为`[[0,0],[3,3]]`和`[[0,2],[0,2]]`,可以获取四个角的元素:`x[rows,cols]`,结果为`[[0 2] [9 11]]`。此外,结合切片与索引数组可进一步定制数据选择,如`a[1:3, 1:3]`或`a[...,1:]`等。
36 3
|
5月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 6
NumPy高级索引包括 using 整数数组、布尔数组等来 access 数组元素, enabling 复杂的操作和 modifications. **布尔索引** uses 布尔数组 to index 目标数组, filtering 元素 based on 条件.
30 2
|
5月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 9
NumPy高级索引包括整数数组索引、布尔索引及花式索引,能实现对数组元素的灵活访问与复杂操作。其中,花式索引通过整数数组指定目标轴的下标来选取元素,不同于切片,它总是返回新数组。例如,对二维数组使用倒序索引数组时,会得到指定行的新数组:[[16 17 18 19], [24 25 26 27], [28 29 30 31], [4 5 6 7]]。
46 1
|
5月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 7
NumPy高级索引包括整数数组索引、布尔索引及花式索引。花式索引使用整数数组作为索引,根据这些值选择目标数组的元素或行。与切片不同,它总是返回新数组。
29 1
|
6月前
|
索引 Python
NumPy 教程 之 NumPy 高级索引 2
NumPy高级索引包括整数数组索引、布尔索引等。整数数组索引允许通过一个整数数组访问另一个数组的元素,适用于复杂的数据选取与操作。
30 2
|
6月前
|
Python
NumPy 教程 之 NumPy 创建数组 5
`NumPy`教程:使用`numpy.ones`创建全1数组,形如`numpy.ones(shape, dtype=None, order='C')`,参数`shape`定义数组形状,`dtype`指定数据类型,默认无类型,`order`设定内存布局,默认'C'(行优先)。
39 4