利用Keras实现一个双层的卷积神经网络

简介: 【7月更文挑战第27天】利用Keras实现一个双层的卷积神经网络。

搭建一个神经网络需要经过加载数据、模型构建、模型编译、模型训练、模型评估等几个步骤。利用Keras实现一个双层的卷积神经网络,需要先导入类、设置超参数并加载数据。
from future import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12

输入照片维度

img_rows, img_cols = 28, 28

加载MNIST数据集进行训练和数据测试

(x_train, y_train), (x_test, y_test) = mnist.load_data()
接下来判断使用Theano还是使用TensorFlow,它们的参数输入顺序不同。
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

将类向量转换为二进制类矩阵

y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
然后需要构建模型,这里构建一个两层卷积的神经网络,例程中有两个卷积层、一个池化层、两个全连接层。
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
随后编译模型,采用交叉熵作为损失函数,优化器为keras.optimizers.Adadelta()。
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
接下来进行模型训练,输入训练数据集和测试数据集的数据,还需要输入批次(batch_size)和训练轮数(epochs),这两个参数在之前已经由全局变量设定完成。
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
最后进行模型评估,评估模型的损失以及准确率,并打印出来。
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
除了直接预测外,Keras还可以保存模型。与TensorFlow不同的是,Keras保存模型和权重的文件是HDF5。

目录
相关文章
|
2天前
|
机器学习/深度学习 自然语言处理 自动驾驶
CNN的魅力:探索卷积神经网络的无限可能
卷积神经网络(Convolutional Neural Networks, CNN)作为人工智能的重要分支,在图像识别、自然语言处理、医疗诊断及自动驾驶等领域展现了卓越性能。本文将介绍CNN的起源、独特优势及其广泛应用,并通过具体代码示例展示如何使用TensorFlow和Keras构建和训练CNN模型。
|
2天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
2天前
|
编解码 人工智能 文件存储
卷积神经网络架构:EfficientNet结构的特点
EfficientNet是一种高效的卷积神经网络架构,它通过系统化的方法来提升模型的性能和效率。
9 1
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出卷积神经网络(CNN)的奥秘
【9月更文挑战第3天】在人工智能的浪潮中,卷积神经网络(CNN)无疑是最耀眼的明星之一。本文将通过浅显易懂的语言,带你一探CNN的核心原理和应用实例。从图像处理到自然语言处理,CNN如何改变我们对数据的解读方式?让我们一起走进CNN的世界,探索它的魅力所在。
|
2天前
|
机器学习/深度学习 人工智能 监控
深度学习浪潮中的轻舟:探索卷积神经网络的奥秘
在这个数据泛滥的时代,深度学习如同一艘巨轮,在知识的海洋中破浪前行。然而,在这艘巨轮上,有一个小小的角落常常被人忽视—那就是卷积神经网络(CNN)。本文将带领读者一探究竟,从CNN的核心概念到其在实际中的应用,我们将用通俗易懂的语言,揭开这一技术神秘面纱,让每一位对深度学习感兴趣的朋友都能轻松理解并应用CNN。
9 0
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】在人工智能的浪潮中,深度学习以其强大的数据处理能力成为时代的宠儿。本文将引导你走进深度学习的核心组件之一——卷积神经网络(CNN),并带你一探其背后的奥秘。通过简明的语言和直观的代码示例,我们将一起构建一个简易的CNN模型,理解它在图像处理领域的应用,并探索如何利用Python和TensorFlow实现它。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
11天前
|
安全 Apache 数据安全/隐私保护
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
24 0
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
下一篇
DDNS