开源,免费下载!

简介: 开源,免费下载!

比美国开源Llama3

和中国闭源模型们更强的

Qwen2

今日开源,免费下载!

下载地址:https://modelscope.cn/organization/qwen





1c2a4285665f77f78aa60601ca7dc22f.png





你好,Qwen2


简介


历经数月努力, 我们很高兴迎来了Qwen系列模型从Qwen1.5到Qwen2的重大升级。这一次,我们为大家带来了:


  • 5个尺寸的预训练和指令微调模型, 包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B以及Qwen2-72B;
  • 在中文英语的基础上,训练数据中增加了27种语言相关的高质量数据;
  • 多个评测基准上的领先表现;
  • 代码和数学能力显著提升;
  • 增大了上下文长度支持,最高达到128K tokens(Qwen2-72B-Instruct)。


目前,我们已在Hugging Face和ModelScope上同步开源。期待听到你们的使用反馈!


型基础信息


Qwen2系列包含5个尺寸的预训练和指令微调模型,其中包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B。如下表所示:

2da40f69c41cb315353261214e4e9ee0.png

在Qwen1.5系列中,只有32B和110B的模型使用了GQA。这一次,所有尺寸的模型都使用了GQA,以便让大家体验到GQA带来的推理加速和显存占用降低的优势。针对小模型,由于embedding参数量较大,我们使用了tie embedding的方法让输入和输出层共享参数,增加非embedding参数的占比。


上下文长度方面,所有的预训练模型均在32K tokens的数据上进行训练,并且我们发现其在128K tokens时依然能在PPL评测中取得不错的表现。然而,对指令微调模型而言,除PPL评测之外还需要进行大海捞针等长序列理解实验。在该表中,我们根据大海捞针实测结果,列出了各个指令微调模型所支持的最大上下文长度。而在使用YARN这类方法时,Qwen2-7B-Instruct和Qwen2-72B-Instruct均实现了长达128K tokens上下文长度的支持。


我们投入了大量精力研究如何扩展多语言预训练和指令微调数据的规模并提升其质量,从而提升模型的多语言能力。尽管大语言模型本身具有一定的泛化性,我们还是针对性地对除中英文以外的27种语言进行了增强:

44cf51c69746683eac271838cd6d7a66.png

此外,我们针对性地优化了多语言场景中常见的语言转换(code switch)问题,模型当前发生语言转换的概率大幅度降低。我们使用容易触发语言转换现象的提示词进行测试,观察到Qwen2系列模型在此方面能力的显著提升。


模型测评


相比Qwen1.5,Qwen2在大规模模型实现了非常大幅度的效果提升。我们对Qwen2-72B进行了全方位的评测。在针对预训练语言模型的评估中,对比当前最优的开源模型,Qwen2-72B在包括自然语言理解、知识、代码、数学及多语言等多项能力上均显著超越当前领先的模型,如Llama-3-70B以及Qwen1.5最大的模型Qwen1.5-110B。这得益于其预训练数据及训练方法的优化。


1c2a4285665f77f78aa60601ca7dc22f.png


大规模预训练后,我们对模型进行精细的微调,以提升其智能水平,让其表现更接近人类。这个过程进一步提升了代码、数学、推理、指令遵循、多语言理解等能力。此外,模型学会对齐人类价值观,它也随之变得更加对人类有帮助、诚实以及安全。我们的微调过程遵循的原则是使训练尽可能规模化的同时并且尽可能减少人工标注。我们探索了如何采用多种自动方法以获取高质量、可靠、有创造力的指令和偏好数据,其中包括针对数学的拒绝采样、针对代码和指令遵循的代码执行反馈、针对创意写作的回译、针对角色扮演的scalable oversight、等等。在训练方面,我们结合了有监督微调、反馈模型训练以及在线DPO等方法。我们还采用了在线模型合并的方法减少对齐税。这些做法都大幅提升了模型的基础能力以及模型的智能水平。


b7eb2af5306e0e9871983c41f4cf6976.png

我们全面评估了Qwen2-72B-Instruct在16个基准测试中的表现。Qwen2-72B-Instruct在提升基础能力以及对齐人类价值观这两方面取得了较好的平衡。相比Qwen1.5的72B模型,Qwen2-72B-Instruct在所有评测中均大幅超越,并且了取得了匹敌Llama-3-70B-Instruct的表现。


而在小模型方面,Qwen2系列模型基本能够超越同等规模的最优开源模型甚至更大规模的模型。相比近期推出的最好的模型,Qwen2-7B-Instruct依然能在多个评测上取得显著的优势,尤其是代码及中文理解上。

  078b2ce906eea0cd6809d1991c38068f.png


亮点


#代码&数学


我们持续投入提升Qwen的代码及数学能力。在代码方面,我们成功将CodeQwen1.5的成功经验融入Qwen2的研发中,实现了在多种编程语言上的显著效果提升。而在数学方面,大规模且高质量的数据帮助Qwen2-72B-Instruct实现了数学解题能力的飞升。


8f045b4528dba0a38ee817d88c6bb147.jpg


#长文本处理


Qwen2系列中的所有Instruct模型,均在32k上下文长度上进行训练,并通过YARN或Dual Chunk Attention等技术扩展至更长的上下文长度。


下图展示了我们在Needle in a Haystack测试集上的结果。值得注意的是,Qwen2-72B-Instruct能够完美处理128k上下文长度内的信息抽取任务。结合其本身强大的性能,只要有充足的算力,它一定能成为你处理长文本任务的首选!


此外,Qwen2系列中的其他模型的表现也十分突出:Qwen2-7B-Instruct几乎完美地处理长达128k的上下文;Qwen2-57B-A14B-Instruct则能处理64k的上下文长度;而该系列中的两个较小模型则支持32k的上下文长度。


除了长上下文模型,我们还开源了一个智能体解决方案,用于高效处理100万tokens级别的上下文。更多详细信息,请参见我们关于该主题的博客文章。


3fa20d81b7c86f6e8015ee8ccb7a6326.png


安全


下表展示了大型模型在四种多语言不安全查询类别(非法活动、欺诈、色情、隐私暴力)中生成有害响应的比例。测试数据来源于Jailbreak,并被翻译成多种语言进行评估。我们发现Llama-3在处理多语言提示方面表现不佳,因此没有将其纳入比较。通过显著性检验(P值),我们发现Qwen2-72B-Instruct模型在安全性方面与GPT-4的表现相当,并且显著优于Mixtral-8x22B模型。


a8a87ac5b8d93293fffe890d7783d603.jpg


使用Qwen2


现在,模型均已开源在Hugging Face和ModelScope上。欢迎查阅模型卡了解具体用法和更多关于模型的信息,如特性、指标等。


长时间以来,来自开源生态的朋友们一致支持着Qwen的发展,包括微调(Axolotl、LLaMA-Factory、Firefly、Swift、XTuner)、量化(AutoGPTQ、AutoAWQ、Neural Compressor)、部署(vLLM、SGL、SkyPilot、TensorRT-LLM、OpenVINO、TGI)、本地运行(MLX、Llama.cpp、Ollama、LM Studio)、Agent及RAG(检索增强生成)框架(LlamaIndex, CrewAI, OpenDevin)、评测(LMSys, OpenCompass, Open LLM Leaderboard)、模型二次开发(Dolphin, OpenBuddy)。想了解更多关于如何在三方框架中使用Qwen,欢迎阅读各项目的官方文档以及我们的官方文档了解更多用法!



当然,这里还有很多一直帮助我们的朋友们未被提及。我们真诚地感谢大家的支持,我们也希望社区的合作能够携手推动开源AI的发展。


模型许可


此次我们采用不同的模型许可。除了Qwen2-72B依旧使用此前的Qianwen License外,其余模型,包括Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B以及Qwen2-57B-A14B在内,均采用Apache 2.0的许可。我们希望本次开放程度的提升能够加速Qwen2在全球各地的落地及商业应用。


Qwen2的下一步是什么?


我们还在训练更大的模型,继续探索模型及数据的Scaling Law。此外,我们还将把Qwen2扩展成多模态模型,融入视觉及语音的理解。在不久的将来,我们还会继续开源新模型。敬请期待!


引⽤


不久后我们将推出Qwen2的技术报告。欢迎引用!


@article{qwen2,  

    title={Qwen2 Technical Report},  

    year={2024} 

}



/ END /

目录
相关文章
|
6月前
|
网络协议 数据处理 数据安全/隐私保护
|
8月前
|
搜索推荐 API 数据库
开源电子邮件营销平台 listmonk 使用教程
电子邮件营销是海外产品推广的关键,而ESP(电子邮件服务提供商)如Mailchimp和SendCloud等常被用于管理邮件列表和跟踪效果。然而,成本和定制化限制成为问题。为解决这些问题,开源平台如listmonk提供了一种灵活且可定制的解决方案。listmonk用Go语言编写,具备订阅者管理、邮件创建发送、跟踪分析和API集成等功能,特别适合中小企业和大型组织。它还支持一键部署,例如通过Sealos应用商店,使得部署过程变得简单。
293 1
|
8月前
|
移动开发 编解码 数据可视化
分享12款我常用的开源免费工具
分享12款我常用的开源免费工具
214 1
|
数据挖掘 图形学
bookdown官网最新开源书籍汇总
bookdown官网最新开源书籍汇总
607 0
|
JavaScript Java 程序员
为什么人家的开源项目文档如此炫酷?原来用的是这款神器
VuePress是Vue驱动的静态网站生成器。对比我们的Docsify动态生成网站,对SEO更加友好。 使用VuePress具有如下优点: 使用Markdown来写文章,程序员写起来顺手,配置网站非常简洁。 我们可以在Markdown中使用Vue组件,如果你熟悉Vue的话会非常方便。 打包网站时会为每个页面预渲染生成静态的HTML,性能好,也有利于SEO。
秒建炫酷的开源项目文档,这款神器用起来够优雅
学习过我的开源项目mall的朋友应该知道,我有一个使用Docsify 搭建的项目文档网站。使用Docsify搭建文档网站虽然简单,但是缺少分类、标签、SEO这类功能,随着文档越来越多,查找起来有点不方便!今天给大家推荐一个炫酷的文档主题vuepress-theme-hope,用来搭建项目文档网站正合适! vuepress-theme-hope 简介 vuepress-theme-hope是一个具有强大功能的VuePress主题,为Markdown添加了更多增强语法,可用于搭建项目文档和博客网站。支持分类和标签功能,可以让你的文档更加结构化!内置多种插件,功能强大,值得一试!
|
前端开发 JavaScript Java
免费下载!程序员入门系列教程之《零基础HTML入门教程》重磅推出
本书由阿里云开发者社区联合乘风者专家博主陈文阳共同制作。 本教程是零基础系列教程的一部分,全套教程具体学习内容还包含前端的 HTML、CSS、JavaScript、jQuery、Bootstrap、Vue,以及后端的 Java、Servlet、JDBC、MySQL 数据库、SSM、Spring Boot、Spring Cloud,本教程讲解其中的 HTML 技术。
32654 3
免费下载!程序员入门系列教程之《零基础HTML入门教程》重磅推出
|
存储 设计模式 Java
【重磅福利】冰河又一超硬核分布式存储PDF教程免费开源!!
在 【冰河技术】 微信公众号中的【分布式存储】专题,更新了不少文章,有些读者反馈说,在公众号中刷历史文章不太方便,有时会忘记自己看到哪一篇了,当打开一篇文章时,似乎之前已经看过了,但就是不知道具体该看哪一篇了。相信很多小伙伴都会有这样的问题。那怎么办呢?最好的解决方案就是我把这些文章整理成PDF电子书,免费分享给大家,这样,小伙伴们看起来就方便多了。希望这本电子书能够给大家带来实质性的帮助。
182 0
【重磅福利】冰河又一超硬核分布式存储PDF教程免费开源!!
|
缓存 运维 JavaScript
免费开源的 HelloDjango 系列教程,结束还是开始?
我们已经成功地开发了一个功能比较完备的个人博客,是时候来总结一下我们的工作了。 在教程的前两篇,我们介绍了如何搭建 django 开发环境,如何创建 django 项目以及 django 应用,这是我们进行 django 项目开发的基础。 第 3、4 篇:讲了 django ORM 的基础操作。ORM 是 django 核心中的核心,不仅 django 自带的应用底层全都依赖于 ORM,大部分使用 django 构建的应用基本也离不开 django ORM 的操作,所以能否熟练掌握 django 的 ORM API
124 0
|
安全 Cloud Native 前端开发
开放下载!《iOS开发者必读资讯》
对于开发者和程序员来说,对 WWDC 20 我们有哪些新发现和新思考?淘系技术客户端团队将从Swift语言、metal的变化、中间件相关的-网络技术相关、隐私适配等各个话题,来系统输出我们的关注点和看法。
8162 0
开放下载!《iOS开发者必读资讯》