人工智能LLM问题之大模型的涌现能力如何解决

简介: 人工智能LLM问题之大模型的涌现能力如何解决

问题一:什么是大模型的涌现能力


什么是大模型的涌现能力


参考回答:

大模型的涌现能力指的是当模型达到一定规模时,性能显著提升,并表现出让人惊艳、意想不到的能力。这些能力包括语言理解能力、生成能力、逻辑推理能力等。一般来说,模型在100亿到1000亿参数区间可能产生这种能力涌现。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615742


问题二:什么是上下文学习(ICL)


什么是上下文学习(ICL)


参考回答:

上下文学习(ICL)是指不需要微调,只需要少数几个样例作为示例,就能在未知任务上取得不错的效果。它主要依赖于设计任务相关的指令形成提示模板,并用少量的标注样本作为prompt的一部分,引导模型在新的测试数据输入上生成预测结果。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615743


问题三:COT能力是什么


COT能力是什么


参考回答:

COT能力是大模型涌现出的一种能力,它使模型能够解决复杂问题,并具有可解释性。这种能力在推荐系统等领域有重要应用。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615744


问题四:为什么推荐系统要考虑使用LLM


为什么推荐系统要考虑使用LLM


参考回答:

推荐系统考虑使用LLM的原因有多方面。首先,可以利用大模型的知识和推理能力来深入理解用户的上下文行为。其次,大模型具有很强的zero-shot/few-shot能力,便于快速适配下游任务。此外,LLM还有助于解决推荐系统中的公平性和bias问题,优化冷启动场景和多场景多任务,并提升推荐结果的可解释性。最后,LLM还可以直接用于推荐结果的生成。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615745


问题五:LLM在推荐系统中有哪些应用优势


为什么LLM会受到如此多的关注


参考回答:

LLM在推荐系统中的应用优势包括:能够深入理解用户上下文行为、快速适配下游任务、解决公平性和bias问题、优化冷启动和多场景多任务、提升推荐结果可解释性以及直接生成推荐结果等。这些优势使得LLM在推荐系统中具有广泛的应用前景。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615746

相关文章
|
2月前
|
数据采集 自然语言处理 供应链
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
数据投毒通过在训练数据中植入恶意样本,将后门永久嵌入大模型,仅需数百份毒样本即可触发数据泄露、越狱等行为,防御需结合溯源、聚类分析与自动化检测。
215 2
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
|
2月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
264 120
|
2月前
|
机器学习/深度学习 缓存 监控
139_剪枝优化:稀疏模型压缩 - 分析结构化剪枝的独特速度提升与LLM部署加速实践
随着大语言模型(LLM)规模的不断增长,模型参数量已从最初的数亿扩展到数千亿甚至万亿级别。这种规模的模型在推理过程中面临着巨大的计算和内存挑战,即使在最先进的硬件上也难以高效部署。剪枝优化作为一种有效的模型压缩技术,通过移除冗余或不重要的参数,在保持模型性能的同时显著减少计算资源需求。
|
3月前
|
人工智能 数据挖掘 大数据
人工智能模型决策过程:机器与人类协作成效
决策智能(DI)融合AI与人类判断,提升商业决策质量。通过数据驱动的预测与建议,结合人机协作,实现更高效、精准的业务成果,推动企业迈向数据文化新阶段。(238字)
|
2月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
437 2
|
2月前
|
机器学习/深度学习 缓存 PyTorch
131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
|
2月前
|
机器学习/深度学习 存储 缓存
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。

热门文章

最新文章