Java应用频繁FullGC分析

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: ### 一、JVM的内存分布 #### 1.1 JVM内存分布概况 ![img](https://img.alicdn.com/tfs/TB1bhRnRFXXXXa2XVXXXXXXXXXX-510-401.png) * 堆内存划分为: Eden、Survivor 和 Tenured/Old 空间 ![img](https://img.alicdn.com/tfs/TB1EVh

一、JVM的内存分布

1.1 JVM内存分布概况

img

  • 堆内存划分为: Eden、Survivor 和 Tenured/Old 空间
    img

1.2 Minor GC、Major GC、Full GC

1.3 JVM垃圾回收算法

img

二、应用的GC日志配置

2.1 应用GC日志配置

JVM的GC日志的主要参数包括如下几个:

-XX:+PrintGC 输出GC日志
-verbose:gc 示输出虚拟机中GC的详细情况
-XX:+PrintGCDetails 输出GC的详细日志
-XX:+PrintGCTimeStamps 输出GC的时间戳(以基准时间的形式)
-XX:+PrintGCDateStamps 输出GC的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800)
-XX:+PrintHeapAtGC 在进行GC的前后打印出堆的信息
-Xloggc:../logs/gc.log 日志文件的输出路径

-verbose:gc 中参数-verbose:gc 表示输出虚拟机中GC的详细情况.

使用后输出如下:

[Full GC 168K->97K(1984K), 0.0253873 secs]

解读如下:

  箭头前后的数据168K和97K分别表示垃圾收集GC前后所有存活对象使用的内存容量,说明有168K-97K=71K的对象容量被回收,括号内的数据1984K为堆内存的总容量,收集所需要的时间是0.0253873秒(这个时间在每次执行的时候会有所不同)

2.2 线上应用配置实例

img

2.2 应用GC日志分析

2017-06-02T15:10:11.930+0800: 68752.147: [GC2017-06-02T15:10:11.930+0800: 68752.147: [ParNew: 1679677K->1878K(1887488K), 0.0176620 secs] 2204253K->526489K(6753536K), 0.0178770 secs] [Times: user=0.07 sys=0.00, real=0.02 secs]
2017-06-02T15:10:18.522+0800: 68758.739: [GC2017-06-02T15:10:18.522+0800: 68758.739: [ParNew: 1679702K->2122K(1887488K), 0.0184380 secs] 2204313K->526767K(6753536K), 0.0186610 secs] [Times: user=0.06 sys=0.00, real=0.02 secs]
2017-06-02T15:10:22.812+0800: 68763.029: [GC2017-06-02T15:10:22.812+0800: 68763.030: [ParNew: 1679946K->2104K(1887488K), 0.0166490 secs] 2204591K->526796K(6753536K), 0.0168640 secs] [Times: user=0.06 sys=0.00, real=0.01 secs]
2017-06-02T15:10:29.874+0800: 68770.091: [GC2017-06-02T15:10:29.874+0800: 68770.091: [ParNew: 1679928K->1646K(1887488K), 0.0174360 secs] 2204620K->526439K(6753536K), 0.0176530 secs] [Times: user=0.06 sys=0.00, real=0.02 secs]

取倒数第一条记录分析一下各个字段都代表了什么含义

2017-06-02T15:10:29.874+0800: 68770.091: (时间)[GC(Young GC)2017-06-02T15:10:29.874+0800: 68770.091: [ParNew()使用ParNew作为年轻代的垃圾回收): 1679928K(年轻代垃圾回收前的大小)->1646K年轻代垃圾回收以后的大小)(1887488K)(年轻代的总大小), 0.0174360 secs(回收时间)]] 2204620K(堆区垃圾回收前的大小)->526439K(堆区垃圾回收后的大小)(6753536K(堆区总大小), 0.0176530 secs(回收时间)] [Times: user=0.06Young GC用户耗时) sys=0.00(Young GC系统耗时), real=0.02 secsYoung GC实际耗时)]

我们再对数据做一个简单的分析:

从最后一条GC记录中我们可以看到 Young GC回收了 1679928-1646=1678282K的内存
Heap区通过这次回收总共减少了 2204620-526439=1678181K的内存。

1678282-1678181=101K说明通过该次Young GC有101K的内存被移动到了Old Gen

我们来验证一下

在最后一次Young GC的回收以前 Old Gen的大小为526796(倒数第二条堆内存)-2104=524692 <br/>
回收以后Old Gen的内存使用为526439-1646=524793
Old Gen在该次Young GC以后内存增加了524793-524692=10K 与预计的相符

三、常见GC查看工具

img

待续

相关实践学习
日志服务之数据清洗与入湖
本教程介绍如何使用日志服务接入NGINX模拟数据,通过数据加工对数据进行清洗并归档至OSS中进行存储。
目录
相关文章
|
3天前
|
监控 Java 数据库连接
Java面试题:如何诊断和解决Java应用的内存泄漏问题?
Java面试题:如何诊断和解决Java应用的内存泄漏问题?
11 2
|
3天前
|
监控 Java 开发者
Java面试题:如何使用JVM工具(如jconsole, jstack, jmap)来分析内存使用情况?
Java面试题:如何使用JVM工具(如jconsole, jstack, jmap)来分析内存使用情况?
10 2
|
3天前
|
Java API
Java面试题:说明Lambda表达式在Java中的应用,以及函数式接口的概念和作用。
Java面试题:说明Lambda表达式在Java中的应用,以及函数式接口的概念和作用。
9 0
|
3天前
|
设计模式 Java
Java面试题:描述观察者模式的工作原理及其在Java中的应用。
Java面试题:描述观察者模式的工作原理及其在Java中的应用。
7 0
|
3天前
|
监控 网络协议 Java
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
9 0
|
3天前
|
缓存 搜索推荐 Java
Java面试题:简述CAP理论及其在分布式系统设计中的应用。请提供一个具体的例子,说明在系统设计中如何取舍一致性和可用性
Java面试题:简述CAP理论及其在分布式系统设计中的应用。请提供一个具体的例子,说明在系统设计中如何取舍一致性和可用性
9 0
|
3天前
|
存储 安全 Java
Java面试题:请解释Java中的泛型集合框架?以及泛型的经典应用案例
Java面试题:请解释Java中的泛型集合框架?以及泛型的经典应用案例
8 0
|
3天前
|
设计模式 存储 缓存
Java面试题:结合设计模式与并发工具包实现高效缓存;多线程与内存管理优化实践;并发框架与设计模式在复杂系统中的应用
Java面试题:结合设计模式与并发工具包实现高效缓存;多线程与内存管理优化实践;并发框架与设计模式在复杂系统中的应用
7 0
|
3天前
|
设计模式 缓存 安全
Java面试题:设计模式在并发编程中的创新应用,Java内存管理与多线程工具类的综合应用,Java并发工具包与并发框架的创新应用
Java面试题:设计模式在并发编程中的创新应用,Java内存管理与多线程工具类的综合应用,Java并发工具包与并发框架的创新应用
7 0
|
3天前
|
设计模式 安全 NoSQL
Java面试题:结合单例模式与Java内存管理,设计一个线程安全的单例类?分析Java多线程工具类ExecutorService与Java并发工具包中的工具类,设计一个Java并发框架的分布式锁实现
Java面试题:结合单例模式与Java内存管理,设计一个线程安全的单例类?分析Java多线程工具类ExecutorService与Java并发工具包中的工具类,设计一个Java并发框架的分布式锁实现
11 0