数据+AI助力美妆营销,如何解锁品牌增长新模式?

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
简介: 美妆行业是越来越卷了!

美妆行业是越来越卷了!


随着消费市场的复苏与升级,美妆行业迎来了显著利好。一方面,本土美妆品牌乘着国潮发展的流量加速成长。另一方面,深耕多年的国际品牌也在积极布局,新品牌的不断涌现,行业竞争也在日益加剧。据国家统计局发布的数据显示,2023全年,化妆品类商品零售额为4142亿元,同比增长5.1%,达到历史最高水平。

 

然而,美妆行业仍然面临不确定性,提质增效、精耕细作已成为美妆行业的主旋律。作为可选消费,美妆产品迭代速度快、消费者黏性低。由此,企业更依赖营销抢夺用户心智、驱动生意增长。在此情况下,消费者数字化运营的重要性不言而喻。

 

美妆品牌亟需把握以下机会点:

 

● 媒体投放前中后全链路可借助自动化采集的投放回流数据洞察指导投放策略优化,媒介拉新可更加高效;

● 针对私域平台进行科学、完善的埋点治理,可以洞察消费者关键行为路径并联动自动化营销提效;

借助大数据针对消费者(会员人群)进行全面而深入的画像洞察,可以实现精细化的客户分层和分群运营;

● 借助AI和算法模型的能力,可以高效地提升首购、复购转化等场景的营销转化效率;

● 及时、准确地洞察消费者原声,消费者满意度可进一步提升。

 

作为国内DaaS赛道的提出者和领导者,瓴羊基于历史积累的数字化运营实践,在美妆品牌数字化消费者运营痛点的基础上,构建了消费者数字化运营解决方案。

方案从“引流、转化、洞察、营销、体验”,拆分不同场景,优化方向。如今,瓴羊这套打法已经帮助越来越多的美妆企业拥抱数字化,向着“跟着顾客需求走”的新时期迈进。


全链路数据洞察

指导高效媒介策略与拉新优化


针对美妆品牌的全链路提效需求,瓴羊以覆盖投前、投中、投后的产品能力帮助品牌实现更高效、科学的媒体投放策略优化。通过投前计划配置与监测链接生成,品牌能够追踪在哪些资源点位、平台上进行了投放,以及消费者的具体行为(如曝光或点击)并进行数据的回流。投中阶段,收集到的所有数据沉淀至品牌数据库后,品牌能够直观根据相应数据看板,进行可视化并实现基于媒体行为的曝光-点击行为归因洞察,帮助优化投中的媒体预算分配策略;


投后阶段,品牌可以按照不同的渠道、资源点位、投放内容素材等进行人群拆分,形成多个精准的人群包后,推送至不同的平台,用于二次的广告投放或营销运营。相较传统投放方式,瓴羊将媒体投放过程变为一个产品化、自动化的过程,同时也提高了效率和安全性。


优化埋点治理

提升私域平台的用户行为分析及营销自动化效能


针对将流量引入品牌私域并实现有效转化,存在几个常见挑战。首先,不完整或缺失的关键埋点可能导致对消费者行为的理解不充分,难以实施精确的策略。其次,即便埋点到位,缺乏对消费者核心路径的可视化分析能力也会使得难以追踪并优化消费者体验。

 

在为某美妆零售品牌的小程序服务过程中,瓴羊首先基于业务需求场景,对品牌的多个私域平台做体系化且完善的埋点,除了针对埋点采集的数据做流量和客户行为分析外,还针对客户关键访问路径做了漏斗分析,此外,还将客户关键节点行为加工为可运营的标签和人群;最终,瓴羊助力该品牌实现页面路径的优化和消费者体验的布局提升,让品牌私域流量“物尽其用”,与营销系统联动,促进关键节点的转化率提升。

 

此外,瓴羊帮助品牌构建的行为标签体系还可以用于私域运营提效,可与自动化营销链路以及CRM系统等对接打通,将消费者行为作为实时营销动作的触发条件,及时抓住消费者注意力,在关键节点助力营销效率提升。


360呈现消费者画像

实现精细化客户分层与运营


如果说美妆品牌营销是一座大厦,消费者则是这座大厦的基石。对消费者需求画像特征越了解、越准确,大厦的地基就越稳固。清楚消费者在哪里、怎么想、喜欢什么,才能真正做到获客高效运营。

 

在人群细分、分化大行其道的今天,很多品牌无法真正深入了解消费者,原因有三:一是品牌消费者数据分散在各个平台,难以完整洞察;二是品牌自有消费者标签非常局限,往往仅有入会信息和订单交易信息无法360度呈现消费者画像;三是品牌因上述局限性,在没有数据支撑的情况下,难以制定精细化的人群分层和分群策略。

 

面对种种挑战,品牌该如何全面且深入地勾勒出消费者画像,并基于此构建精细化的人群运营策略?瓴羊则基于阿里生态大数据技术服务能力,帮助品牌做消费者360度完整画像洞察的同时构建起品牌视角下的完整客户标签体系,以达到支撑品牌精细化运营策略落地的目的。


image.png


以某国际美妆品牌为例,该品牌在解决线上渠道会员引流至门店深化客户运营的问题时,一方面无法识别线上会员常住区域附近是否有品牌线下专柜门店,一方面也缺少对客户画像认知,难以实现精细化的客户运营,难以支持精细化运营活动落地。

 

瓴羊则基于天域数据引擎的大数据技术服务能力,对品牌会员进行基础特征和兴趣偏好的洞察,并基于预测特征实现人群再分层,从而指导品牌针对不同城市&区域的用户推荐其附近的门店去领取到店礼、针对不同年龄阶段的客户差异化推荐功效不同的产品、针对不同消费力水平的客户推荐不同价格带的产品,最终促进品牌节省了超过30%的短信营销预算,同时有力地提升了精细化运营转化效率。


image.png


先进的智能算法与行业经验的结合

为品牌打造高效的运营策略


品牌构建了完整的标签体系做消费者画像全面洞察,那么下一步该如何高效地找到高价值人群?如何组织匹配的商品和内容与潜在消费者目标客群沟通?又如何让消费者快速完成购买转化?品牌如若缺乏精细化的运营策略,就如同面对一座隐藏在山中的金矿,消费者潜力巨大但难以高效地发掘。

 

因此,为了进一步释放这些潜在的消费者价值,品牌需要采取一系列有针对性的措施。

 

针对品牌营销的进化过程,AI和大模型技术的运用带来了全新的发展可能。瓴羊数字化消费者运营解决方案,借助平台大数据和先进的算法模型,以及优秀的行业最佳实践经验构建美妆品牌精细化运营策略。针对消费者运营全生命周期的6个核心运营阶段,通过针对具体场景问题的算法模型帮品牌高效地预测精选出未来某段时间内的高潜力目标人群,通过叠加预测其对商品的偏好组织差异化的对客沟通内容,并通过自动化的营销触达流程实现最终的营销活动转化率提升。


image.png


例如,某个国货美妆品牌在营销过程中遇到了重大挑战。无论是日常销售还是大促活动,该品牌在圈选目标群体时的效率难以提升,难以精准地组织并推送适合的营销内容和活动商品给目标人群。由于缺乏有效的客户盘活策略,品牌的会员复购率难以提升,也导致高价值人群的逐渐流失。

 

针对此场景诉求,瓴羊基于两个智能算法模型—“人货匹配”和“复购高潜规预测”帮助品牌提升会员营销转化效率,一方面,瓴羊通过复购高潜预测模型帮助品牌从海量的存量会员池中找到了在未来15天内大概率可能会产生回购的人群;另一方面,瓴羊通过人货匹配模型,从货品的视角以货圈人找到对特定商品有购买偏好的目标人群,之后基于上述两个维度的人群交叉,可以筛选出偏好不同商品且未来15天内可能会产生回购的多个细分人群包。最后针对这些细分人群组织差异化的沟通内容和素材,并设计差异化营销触达策略,自动化流程去做执行。瓴羊通过这样一套组合能力,对比该品牌原有人工运营圈选投放的营销活动转换率提升了2.5倍。


image.png


高效洞察消费者原声:

助力品牌提升消费者满意度


从品牌的自有客服系统、平台电商评价、电商问答、社媒等多个平台采集消费者原声反馈,结合行业化内容标签体系进行结构化分析和洞察,评估消费者反馈的内容、舆情风险以及消费者情感倾向。分析结果将辅助运营策略优化,改善服务、订单退款、物流、新品推出和营销活动等客户体验。无论是产品研发,还是市场部门以及客服团队,都可以借此快速了解消费者表达的需求,并及时针对性做出改进动作,最终实现消费者满意度的提升。

 

·结语·

 

《2023麦肯锡中国消费者报告:韧性时代》中指出,中国中产阶级继续壮大,未来将有7100万家庭进入这一较高收入区间,这无疑展现了中国消费市场的巨大潜力。为了抢占消费市场,在美妆“新黄金时代”角逐中立于不败之地,数智化转型已成为每家美妆品牌必须深耕的“长期主义”战略。

 

瓴羊通过提供专业的服务和建立深度的合作,帮助各行各业品牌在数字化、智能化浪潮中稳步前行,以实现可持续发展与业务增长。截至目前,瓴羊的数字化解决方案与服务已经应用在餐饮、零售、汽车等行业中,其强大的数据、算法能力也能够快速复制、落地不同行业,输出量身定制的高效、精准数字化解决方案。


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
人工智能 自然语言处理 安全
ChatBI,用AI自然语言与数据对话
在数字经济快速发展的2025年,企业数据量激增,市场对快速决策和深度分析提出更高要求。本方案介绍如何通过阿里云Quick BI工具,结合AI能力,帮助商业分析师高效应对数据洪流,实现智能化分析、快速决策,提升业务洞察力与决策效率。
ChatBI,用AI自然语言与数据对话
|
2月前
|
人工智能 自然语言处理 供应链
走进麦当劳·会数据同学:解锁AI在企业应用的深度价值
麦当劳中国进入“金拱门时代”,加速数字化转型,计划未来4年投入40亿元用于研发创新。携手阿里云与瓴羊,构建以客户为中心的数字系统,优化消费体验与门店运营,打造全球数字化标杆。
|
2月前
|
人工智能 自然语言处理 算法
AI与API结合:自动解析商品描述+情感分析评论数据
AI与API深度融合正在重塑电商运营模式。通过自动解析商品描述、分析评论情感,企业可实现信息标准化、用户画像精准化及运营决策自动化。本文从技术架构、核心算法、实战案例三方面,详解AI如何驱动电商智能化升级。
|
2月前
|
SQL 人工智能 自然语言处理
数据 + 模型 驱动 AI Native 应用发展
随着人工智能技术的飞速发展,从生成式人工智能(GenAI)到自主代理人工智能(Agentic AI)的演进,企业面临着构建 AI Native 应用的机遇与挑战。本文将深入探讨 AI 开发模式的转变、企业应用的挑战以及技术架构和开发工具的应用,旨在为读者提供一个全面的视角,以理解如何利用数据和模型驱动 AI Native 应用的发展。
132 0
|
2月前
|
存储 机器学习/深度学习 人工智能
还在为释放医疗数据潜能,驱动智慧医联体升级 ——AI赋能的病历全流程智能管理解决方案
AI赋能病历管理,破解录入低效、存储难、数据沉睡等痛点。实现病历数字化、结构化、智能化,降本增效,助力医院智慧升级。
80 0
|
存储 机器学习/深度学习 人工智能
阿里云ODPS:在AI浪潮之巅,铸就下一代智能数据根基
在智能爆炸时代,ODPS正从传统数据平台进化为“AI操作系统”。面对千亿参数模型与实时决策挑战,ODPS通过流批一体架构、多模态处理、智能资源调度等技术创新,大幅提升效率与智能化水平。从自动驾驶到医疗联合建模,从数字孪生到低代码AI开发,ODPS正重塑企业数据生产力,助力全球客户在算力洪流中抢占先机。
110 0
自适应IT互联网营销企业网站pbootcms模板
一款蓝色自适应IT互联网营销企业网站pbootcms模板,该模板采用响应式设计,可自适应手机端,适合一切网络技术公司、互联网IT行业,源码下载,为您提供了便捷哦。
153 2
|
Web App开发 监控
从AIPL到GROW,谈互联网大厂的营销分析模型
上一篇《一文看懂:搭建活动分析体系》分享以后,有小伙伴问:那做活动分析,是不是也有模型呢?答:不但有,而且很多。而且互联网大厂尤其热衷于创造新模型,以至于每年都有新词冒出来,诸如:AIPL、FAST、GROW、RISE、5A……等等,看得人头晕目眩。今天就跟大家简单聊聊这些营销模型背后的底层逻辑。
633 0
从AIPL到GROW,谈互联网大厂的营销分析模型

热门文章

最新文章