MySQL分库分表

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 【7月更文挑战第11天】分库分表策略涉及数据源、库和表的划分,如订单表可能分布于多层结构中。面试时,主键生成是关键点。自增主键在不分库分表时适用,但在分表场景下会导致冲突。例如,按`buyer_id % 2`分两张表,自增ID无法保证全局唯一。因此,需要全局唯一且能自增的ID,如雪花算法,兼顾性能和高并发需求。

分库分表是在面试里一个非常热门而且偏难的话题,下面了解UUID、自增主键和雪花算法的特点,并且在面试的时候刷出亮点。

前置

所谓的分库分表严格来说是分数据源、分库和分表。例如每个公司订单表的分库分表策略就是用了8个主从集群,每个主从集群4个库,每个库有32张表,合起来有8432张表。

不过根据数据规模和读写压力,也可以共享一个主从集群,然后只分库或者只分表。如果面试面到了分库分表的内容,那么主键生成基本上就是一个绕不开的话题。在没有分库分表的时候,我们可以使用自增主键。
比如在MySQL里的建表语句,指定了AUTO_INCREMENT

CREATE TABLE order (
   id BIGINT PRIMARY KEY AUTO_INCREMENT,
   buyer_id BIGINT NOT NULL
)

在分库分表的场景下,这种自增主键就没法使用了,因为存在冲突的可能。举个最简单的例子,假如我们分库分表只分表,而且按照buyer_id % 2的值来分成两张表,分别是order_1order_2。如果这两张表都依赖于自增生成主键,那么两张表会生成相同的ID,但是订单这一类的业务,需要一个全局唯一的ID
主键生成一般还伴随两个要点:

  • 全局唯一的ID依旧能够保持自增,因为自增与否会显著影响插入的性能;
  • 只有数据量大的才会考虑分库分表,而数据量大一般意味着并发高,所以还需要考虑怎么支持高并发
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7月前
|
存储 SQL 关系型数据库
MySQL分库分表
MySQL分库分表
78 0
|
7月前
|
关系型数据库 MySQL Java
MySQL单表膨胀优化之MyCat分库分表
MySQL单表膨胀优化之MyCat分库分表
150 0
|
7月前
|
SQL 关系型数据库 MySQL
②⑩① 【MySQL】什么是分库分表?拆分策略有什么?什么是MyCat?
②⑩① 【MySQL】什么是分库分表?拆分策略有什么?什么是MyCat?
110 0
|
7月前
|
SQL 存储 关系型数据库
Mysql系列-5.Mysql分库分表(中)
Mysql系列-5.Mysql分库分表
73 0
|
7月前
|
中间件 关系型数据库 Java
MySQL数据库分库分表方案
MySQL数据库分库分表方案
301 0
MySQL数据库分库分表方案
|
4月前
|
存储 算法 关系型数据库
(二十二)全解MySQL之分库分表后带来的“副作用”一站式解决方案!
上篇《分库分表的正确姿势》中已经将分库分表的方法论全面阐述清楚了,总体看下来用一个字形容,那就是爽!尤其是分库分表技术能够让数据存储层真正成为三高架构,但前面爽是爽了,接着一起来看看分库分表后产生一系列的后患问题,注意我这里的用词,是一系列而不是几个,也就是分库分表虽然好,但你要解决的问题是海量的。
457 3
|
3月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
527 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
|
7月前
|
NoSQL 关系型数据库 MySQL
实时计算 Flink版操作报错之同步MySQL分库分表500张表报连接超时,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
SQL 算法 Java
(二十六)MySQL分库篇:Sharding-Sphere分库分表框架的保姆级教学!
前面《MySQL主从原理篇》、《MySQL主从实践篇》两章中聊明白了MySQL主备读写分离、多主多写热备等方案,但如果这些高可用架构依旧无法满足业务规模,或业务增长的需要,此时就需要考虑选用分库分表架构。
2788 4
|
4月前
|
存储 SQL 关系型数据库
(二十一)MySQL之高并发大流量情况下海量数据分库分表的正确姿势
从最初开设《全解MySQL专栏》到现在,共计撰写了二十个大章节详细讲到了MySQL各方面的进阶技术点,从最初的数据库架构开始,到SQL执行流程、库表设计范式、索引机制与原理、事务与锁机制剖析、日志与内存详解、常用命令与高级特性、线上调优与故障排查.....,似乎涉及到了MySQL的方方面面。但到此为止就黔驴技穷了吗?答案并非如此,以《MySQL特性篇》为分割线,整个MySQL专栏从此会进入“高可用”阶段的分析,即从上篇之后会开启MySQL的新内容,主要讲述分布式、高可用、高性能方面的讲解。
327 1