【c++】STL之stack和queue详解

简介: 【c++】STL之stack和queue详解

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c++,Python等

> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:掌握stack和queue库,了解deque库

> 毒鸡汤:小时候,哭是我们解决问题的绝招,长大后,笑是我们面对现实的武器。

> 望小伙伴们点赞👍收藏✨加关注哟💕💕  



🌟前言

今天咱们学习stack和queue,咱们还是依照官网来学习:

stack - C++ Reference (cplusplus.com)

queue - C++ Reference (cplusplus.com)


⭐主体

       在数据结构初阶中,我们模拟实现了stack和queue,只能说我们知道栈和队列,但是栈和队列的底层是如何实现的我们就不得而知了,面对这个现象我们从新学习栈和队列,深度解剖。学习这个版块,咱们按照下面的图解进行学习:



🌙stack的介绍和使用

💫stack的介绍

stack - C++ Reference (cplusplus.com)

  1. stack是一种容器适配器,其本质是数据结构中的栈。它是一种只能在一端进行插入和删除操作的线性表。
  2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
  3. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,
  4. 默认情况下使用deque。
  5. 栈和队列都叫做适配器/配接器,不是直接实现的,而是封装其他容器,包装转换实现出来的
  6. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下:
  • empty:判空操作。
  • back:获取尾部元素的操作,这是因为栈的top操作相当于拿取尾部元素。
  • push_back:尾部插入元素操作。
  • pop_back:尾部删除元素操作。


💫stack的使用


image.png


代码训练:

#include<iostream>
#include<stack>
#include<queue>
 
using namespace std;
 
void test_stack()
{
    stack<int> st;
    st.push(1);
    st.push(2);
    st.push(3);
    st.push(4);
    st.push(5);
    
    cout << st.empty() << endl; // 检测stack是否为空
    cout << st.size() << endl;  // 返回stack中元素的个数
    
    while (!st.empty())
    {
        cout << st.top() << " ";
        st.pop();
    }
    cout << endl;
}
int main()
{
    test_stack();
    return 0;
}


代码训练:tack的案例,首先先创建一个stack容器,<int>这里表示我这个容器存放的是int类型的数据。然后通过push()将数据压入栈中,stack并不支持迭代器访问,我们通过接口empty()判断栈是否为空,通过top()访问栈顶元素,pop()将数据出栈。


💫stack的应用

1.155. 最小栈


问题分析:设计两个栈,一个负责保存栈的元素,一个负责保存栈的最小值。只要有元素比最小值栈的顶部元素还有小,那么,就将这个值压入最小值栈中,这样就能保证,最小值栈的顶部元素永远是当前压入的所有元素中最小的。


代码:

class MinStack {
public:
    MinStack() 
    {
 
    }
    
    void push(int val) 
    {
        st.push(val);
        if(minst.empty() || val <= minst.top())
        {
            minst.push(val);
        }
    }
    
    void pop() 
    {
        if(minst.top() == st.top())
        {
            minst.pop();
        }
        st.pop();
    }
    
    int top() 
    {
        return st.top();
    }
    
    int getMin() 
    {
        return minst.top();
    }
private:
    stack<int> st;
    stack<int> minst; // 辅助栈
};


2.栈的压入、弹出序列


问题分析:借助一个辅助栈,首先,创建两个变量i和j,分别指向pushV数组的元素和popV数组的元素,然后将pushV的数据压入栈中,直到遇到顶部元素恰好等于出栈序列的元素,那么就将栈顶元素出栈,并且j++。最后,如果栈的元素不为空,那么说明当前出栈序列不符合。


代码

class Solution {
public:
    bool IsPopOrder(vector<int> pushV,vector<int> popV) 
    {
        stack<int> st;
        int i = 0, j = 0; // i 指向push数组的元素 , j 指向pop数组元素
        for(; i < pushV.size();i++)
        {
            st.push(pushV[i]);
            while(!st.empty() && st.top() == popV[j])
            {
                st.pop();
                j++;
            }
        }
        return st.empty();
    }
};


3.150. 逆波兰表达式求值

问题分析:同样借助一个辅助栈来完成,遍历数组tokens,遇到数值就压入栈中,遇到符号,就弹出两个元素,并且根据符号进行求值。最后,栈顶元素就是最终的表达式结果。

class Solution {
public:
    int evalRPN(vector<string>& tokens) 
    {
        stack<int> st;
        for(int i = 0;i<tokens.size();++i)
        {
            if(tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/")
            {
                int num1 = st.top();
                st.pop();
                int num2 = st.top();
                st.pop();
                if(tokens[i] == "+") st.push(num2 + num1);
                else if(tokens[i] == "-") st.push(num2 - num1);
                else if(tokens[i] == "*") st.push(num2 * num1);
                else if(tokens[i] == "/") st.push(num2 / num1);
            }
            else 
            {
                st.push(stoi(tokens[i])); // stoi 把字符串转为数字
            }
        }
        int result = st.top();
        st.pop();
        return result;
    }
};


4.232. 用栈实现队列


问题分析:设计两个栈,一个栈用来入数据,一个栈用来出数据。入队列操作,可以直接将数据插入到stIn中,出队列的时候,如果stOut为空,就将stIn的数据放到stOut中,我们直到栈的特性是后进先出,队列的特性是先进先出,那么将元素放到一个栈中,再出栈到另一个栈中,相当于元素原本的顺序不变,恰好符合队列的要求。


代码:

class MyQueue {
public:
    stack<int> stIn;  // 用来入数据
    stack<int> stOut; // 用来出数据
    MyQueue() 
    {
 
    }
    
    void push(int x) 
    {
        stIn.push(x);
    }
    
    int pop() 
    {
        if(stOut.empty())
        {
            while(!stIn.empty())
            {
                stOut.push(stIn.top());
                stIn.pop();
            }
        }
        int result = stOut.top();
        stOut.pop();
        return result;
    }
    // 获取头部元素
    int peek() 
    {
        int res = this->pop();
        stOut.push(res);
        return res;
    }
    
    bool empty() 
    {
        return stIn.empty() && stOut.empty();
    }
};


🌙queue的介绍和使用

💫queue的介绍

queue - C++ Reference

queue是一种容器适配器,专门用于在先进先出上下文中操作,在容器的一端插入元素,另一端删除元素。

queue的底层也是用作容器来进行封装,底层容器必须支持以下操作:

  • empty:检测队列是否为空。
  • size:返回队列的有效元素个数
  • front:返回队头元素的引用
  • back:返回队尾元素的引用
  • push_back:在队列尾部入队列
  • pop_front:在队列头部出队列

标准容器中的deque、list满足了这些要求,默认情况下,使用deque作为底层容器类。



💫queue的使用


image.png


代码训练:

#include<iostream>
#include<stack>
#include<queue>
 
using namespace std;
 
void test_queue()
{
    queue<int> q;
    q.push(1);
    q.push(2);
    q.push(3);
    q.push(4);
    q.push(5);
 
    cout << q.empty() << endl;
    cout << q.size() << endl;
    while (!q.empty())
    {
        cout << q.front() << " ";
        q.pop();
    }
    cout << endl;
}
int main()
{
    test_queue();
    return 0;
}


运行结果:



 💫queue的应用

225. 用队列实现栈 -

问题分析:使用两个队列,重点在于出栈操作,出栈操作,将队列1的元素,放到队列2,队列1的元素只剩下1个,然后这个作为出栈的元素,之后q1 = q2,然后将q2的元素进行出队。

class MyStack {
public:
    queue<int> q1;
    queue<int> q2;
    MyStack() {
 
    }
    
    void push(int x) {
        q1.push(x);
    }
    
    int pop() {
        int size = q1.size();
        size--;
        while(size--)
        {
            q2.push(q1.front());
            q1.pop();
        }
        int result = q1.front();
        q1.pop();
        q1 = q2;
        while(!q2.empty())
        {
            q2.pop();
        }
        return result;
    }
    
    int top() {
        return q1.back();
    }
    
    bool empty() {
        return q1.empty();
    }
};


🌙priority_queue的介绍和使用

💫priority_queue的介绍

priority_queue::priority_queue - C++ Reference (cplusplus.com)


  1. 优先级队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素是所有元素中最大的。
  2. 优先级队列的底层是用堆进行实现的,大根堆的堆顶是最大的。
  3. 标准容器vector和queue都满足以上要求,如果没有特定要求,默认使用vector作为底层容器类。
  4. 需要支持随机访问迭代器,保证内部始终保持堆结构。容器适配器在需要的时候调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。
  5. 优先级队列的底层容器可以使任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
  • empty():检测容器是否为空。
  • size():返回容器有效元素个数。
  • front():返回容器第一个元素的引用
  • push_back():在容器尾部插入元素
  • pop_back():删除容器尾部元素


🌙容器适配器

💫什么是适配器

适配器是一种设计模式,假设已经有一个设计系统,你需要把新的厂商类整合进去,但是,新的厂商类的接口和原来的接口不一致,但是,又不可以修改原有的代码,这个时候,就可以设计一个适配器作为中间人,实现所期望的接口,与新的厂商类进行对接。


💫 STL标准库中stack和queue的底层结构

stack和queue是对标准库的其他容器的接口进行了包装,STL的stack和queue默认使用deque。


🌙deque的介绍和使用

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。



🌟结束语

      今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。


目录
打赏
0
1
1
0
28
分享
相关文章
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
68 2
【c++丨STL】map/multimap的使用
本文详细介绍了STL关联式容器中的`map`和`multimap`的使用方法。`map`基于红黑树实现,内部元素按键自动升序排列,存储键值对,支持通过键访问或修改值;而`multimap`允许存在重复键。文章从构造函数、迭代器、容量接口、元素访问接口、增删操作到其他操作接口全面解析了`map`的功能,并通过实例演示了如何用`map`统计字符串数组中各元素的出现次数。最后对比了`map`与`set`的区别,强调了`map`在处理键值关系时的优势。
155 73
【c++丨STL】set/multiset的使用
本文深入解析了STL中的`set`和`multiset`容器,二者均为关联式容器,底层基于红黑树实现。`set`支持唯一性元素存储并自动排序,适用于高效查找场景;`multiset`允许重复元素。两者均具备O(logN)的插入、删除与查找复杂度。文章详细介绍了构造函数、迭代器、容量接口、增删操作(如`insert`、`erase`)、查找统计(如`find`、`count`)及`multiset`特有的区间操作(如`lower_bound`、`upper_bound`、`equal_range`)。最后预告了`map`容器的学习,其作为键值对存储的关联式容器,同样基于红黑树,具有高效操作特性。
83 3
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
【c++丨STL】priority_queue(优先级队列)的使用与模拟实现
本文介绍了STL中的容器适配器`priority_queue`(优先级队列)。`priority_queue`根据严格的弱排序标准设计,确保其第一个元素始终是最大元素。它底层使用堆结构实现,支持大堆和小堆,默认为大堆。常用操作包括构造函数、`empty`、`size`、`top`、`push`、`pop`和`swap`等。我们还模拟实现了`priority_queue`,通过仿函数控制堆的类型,并调用封装容器的接口实现功能。最后,感谢大家的支持与关注。
124 1
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
46 12
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
54 16
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等