Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛

简介: 【7月更文挑战第11天】图论核心在于DFS与BFS。DFS深入探索,适用于找解空间;BFS逐层扩展,擅寻最短路径。

在数据结构与算法的殿堂中,图论占据着举足轻重的地位。它不仅理论深厚,而且应用广泛,从社交网络分析到路径规划,从网络流优化到生物信息学,图论的身影无处不在。Python,作为一门既强大又易学的编程语言,为我们探索图论提供了丰富的工具和库。今天,我将带你一起从理论出发,通过实践掌握深度优先搜索(DFS)和广度优先搜索(BFS)这两种基本的图遍历技巧,让你在技术的道路上再进一步,秒变技术大牛。

理论基础
首先,让我们简要回顾一下图论的基础知识。图由节点(也称为顶点)和连接节点的边组成。根据边是否有方向,图可以分为有向图和无向图。图的遍历是指访问图中的每个节点恰好一次的过程,而DFS和BFS是实现这一目标的两种经典方法。

深度优先搜索(DFS):沿着一条路径尽可能深地搜索,直到达到图的尽头,然后回溯到上一个节点,尝试另一条路径。
广度优先搜索(BFS):从起始节点开始,逐层向外扩展,直到访问到目标节点或遍历完所有可达节点。
实践探索
接下来,我们将通过Python代码来实现这两种遍历方法。

DFS实现
python
def dfs(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
print(start, end=' ') # 输出访问顺序
for neighbor in graph[start]:
if neighbor not in visited:
dfs(graph, neighbor, visited)

示例图(邻接表表示)

graph = {
'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F', 'G'],
'F': ['C', 'E'],
'G': ['E']
}

从节点'A'开始DFS遍历

dfs(graph, 'A')
BFS实现
python
from collections import deque

def bfs(graph, start):
visited = set()
queue = deque([start])
visited.add(start)

while queue:  
    node = queue.popleft()  
    print(node, end=' ')  # 输出访问顺序  
    for neighbor in graph[node]:  
        if neighbor not in visited:  
            visited.add(neighbor)  
            queue.append(neighbor)  

从节点'A'开始BFS遍历

bfs(graph, 'A')
深入理解
通过上面的代码实现,我们可以看到DFS和BFS在遍历图时的不同行为。DFS倾向于深入探索,而BFS则倾向于广度覆盖。这种差异使得它们在不同场景下各有优势。例如,在寻找最短路径时,BFS更为高效;而在探索所有可能解时,DFS则更为适合。

结语
掌握DFS和BFS这两种基本的图遍历技巧,不仅能够帮助你解决图论中的经典问题,还能为你的编程之路增添一份强大的武器。随着你对图论知识的深入学习和实践经验的积累,你将能够更加灵活地运用这些技巧,解决更加复杂的问题。记住,技术的提升是一个持续的过程,不断学习和实践是成为技术大牛的关键。现在,你已经迈出了坚实的一步,继续前行吧!

目录
相关文章
|
2天前
|
JavaScript 前端开发 Android开发
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
33 13
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
4天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
4天前
|
JavaScript 搜索推荐 Android开发
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
23 8
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
1月前
|
存储 人工智能 运维
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
199 48
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
|
1月前
|
API Python
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
95 1
|
1月前
|
安全 数据挖掘 编译器
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
66 6
|
2月前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
115 2
|
2月前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
117 15

热门文章

最新文章

推荐镜像

更多