Transformers 4.37 中文文档(六十三)(3)

简介: Transformers 4.37 中文文档(六十三)

Transformers 4.37 中文文档(六十三)(2)https://developer.aliyun.com/article/1564117


class transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringOutput

<来源>

( loss: Optional = None start_top_log_probs: Optional = None start_top_index: Optional = None end_top_log_probs: Optional = None end_top_index: Optional = None cls_logits: Optional = None mems: Optional = None hidden_states: Optional = None attentions: Optional = None )

参数

  • loss (torch.FloatTensor,形状为(1,)可选,如果提供了start_positionsend_positions则返回) — 分类损失,作为开始标记、结束标记(如果提供)的分类损失之和。
  • start_top_log_probs(形状为(batch_size, config.start_n_top)torch.FloatTensor可选,如果未提供start_positionsend_positions则返回)- 顶部config.start_n_top开始标记可能性(波束搜索)的对数概率。
  • start_top_index(形状为(batch_size, config.start_n_top)torch.LongTensor可选,如果未提供start_positionsend_positions则返回)- 顶部config.start_n_top开始标记可能性(波束搜索)的索引。
  • end_top_log_probs(形状为(batch_size, config.start_n_top * config.end_n_top)torch.FloatTensor可选,如果未提供start_positionsend_positions则返回)- 顶部config.start_n_top * config.end_n_top结束标记可能性(波束搜索)的对数概率。
  • end_top_index(形状为(batch_size, config.start_n_top * config.end_n_top)torch.LongTensor可选,如果未提供start_positionsend_positions则返回)- 顶部config.start_n_top * config.end_n_top结束标记可能性(波束搜索)的索引。
  • cls_logits(形状为(batch_size,)torch.FloatTensor可选,如果未提供start_positionsend_positions则返回)- 答案的is_impossible标签的对数概率。
  • mems(长度为config.n_layersList[torch.FloatTensor])- 包含预先计算的隐藏状态。可以用于加速顺序解码(查看mems输入)。将其过去给予该模型的标记 id 不应作为input_ids传递,因为它们已经被计算过。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

XLNetForQuestionAnswering 的输出类型。

class transformers.models.xlnet.modeling_tf_xlnet.TFXLNetModelOutput

<来源>

( last_hidden_state: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )

参数

  • last_hidden_state(形状为(batch_size, num_predict, hidden_size)tf.Tensor)- 模型最后一层的隐藏状态序列。
    num_predict对应于target_mapping.shape[1]。如果target_mappingNone,则num_predict对应于sequence_length
  • mems(长度为config.n_layersList[tf.Tensor])- 包含预先计算的隐藏状态。可以用于加速顺序解码(查看mems输入)。将其过去给予该模型的标记 id 不应作为input_ids传递,因为它们已经被计算过。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFXLNetModel 的输出类型。

class transformers.models.xlnet.modeling_tf_xlnet.TFXLNetLMHeadModelOutput

<来源>

( loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )

参数

  • loss (形状为*(1,)*的 tf.Tensor可选,当提供labels时返回) — 语言建模损失(用于下一个标记预测)。
  • logits (形状为(batch_size, num_predict, config.vocab_size)的 tf.Tensor) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
    num_predict对应于target_mapping.shape[1]。如果target_mappingNone,则num_predict对应于sequence_length
  • mems (长度为config.n_layers的 List[tf.Tensor]) — 包含预先计算的隐藏状态。可以用于加速顺序解码(参见mems输入)。将其过去给定给该模型的标记 id 不应作为input_ids传递,因为它们已经计算过。
  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出,一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFXLNetLMHeadModel 的输出类型。

class transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForSequenceClassificationOutput

<来源>

( loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )

参数

  • loss (tf.Tensor,形状为(1,)可选,当提供label时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (形状为(batch_size, config.num_labels)的 tf.Tensor) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。
  • mems (长度为config.n_layers的 List[tf.Tensor]) — 包含预先计算的隐藏状态。可以用于加速顺序解码(参见mems输入)。将其过去给定给该模型的标记 id 不应作为input_ids传递,因为它们已经计算过。
  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出,一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFXLNetForSequenceClassification 的输出类型。

class transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForMultipleChoiceOutput

<来源>

( loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )

参数

  • loss (形状为(1,)tf.Tensor, *optional*, 当提供labels`时返回) — 分类损失。
  • logits (形状为(batch_size, num_choices)tf.Tensor`) — num_choices是输入张量的第二维度。(参见上面的input_ids)。
    分类分数(SoftMax 之前)。
  • mems (长度为config.n_layersList[tf.Tensor]) — 包含预先计算的隐藏状态。可用于加速顺序解码。将其过去传递给此模型的标记 id 不应作为input_ids`传递,因为它们已经计算过。
  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    模型每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFXLNetForMultipleChoice 的输出类型。

class transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForTokenClassificationOutput

<来源>

( loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )

参数

  • loss (形状为(1,)tf.Tensor, *optional*, 当提供labels`时返回) — 分类损失。
  • logits (形状为(batch_size, sequence_length, config.num_labels)tf.Tensor`) — 分类分数(SoftMax 之前)。
  • mems (长度为config.n_layersList[tf.Tensor]) — 包含预先计算的隐藏状态。可用于加速顺序解码。将其过去传递给此模型的标记 id 不应作为input_ids`传递,因为它们已经计算过。
  • hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。
    模型每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFXLNetForTokenClassificationOutput的输出类型。

class transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForQuestionAnsweringSimpleOutput

<来源>

( loss: tf.Tensor | None = None start_logits: tf.Tensor = None end_logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )

参数

  • loss (形状为(1,)tf.Tensor, *optional*, 当提供labels`时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。
  • start_logits (形状为(batch_size, sequence_length,)tf.Tensor`) — 跨度起始分数(SoftMax 之前)。
  • end_logits (形状为(batch_size, sequence_length,)tf.Tensor`) — 跨度结束分数(SoftMax 之前)。
  • mems (长度为config.n_layersList[tf.Tensor]) — 包含预先计算的隐藏状态。可用于加速顺序解码。将其过去传递给此模型的标记 id 不应作为input_ids`传递,因为它们已经计算过。
  • hidden_statestuple(tf.Tensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出以及初始嵌入输出的隐藏状态。
  • attentionstuple(tf.Tensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每个层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFXLNetForQuestionAnsweringSimple 的输出类型。

PytorchHide Pytorch 内容

XLNetModel

class transformers.XLNetModel

< source >

( config )

参数

  • config(XLNetConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 XLNet 模型变压器输出原始隐藏状态,没有特定的头部。

这个模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None mems: Optional = None perm_mask: Optional = None target_mapping: Optional = None token_type_ids: Optional = None input_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None use_mems: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.models.xlnet.modeling_xlnet.XLNetModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为 (batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以获取详细信息。
    什么是输入 ID?
  • attention_mask(形状为 (batch_size, sequence_length)torch.FloatTensor可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1]
  • 对于未被 masked 的标记为 1,
  • 对于被 masked 的标记为 0。
  • 什么是注意力掩码?
  • mems(长度为 config.n_layersList[torch.FloatTensor]) — 包含预先计算的隐藏状态(参见下面的 mems 输出)。可用于加速顺序解码。将其过去传递给此模型的标记 id 不应作为 input_ids 传递,因为它们已经计算过了。
    use_mems 必须设置为 True 才能使用 mems
  • perm_mask(形状为 (batch_size, sequence_length, sequence_length)torch.FloatTensor可选) — 用于指示每个输入标记的注意力模式的掩码,值选在 [0, 1]
  • 如果 perm_mask[k, i, j] = 0,则在批次 k 中我关注 j;
  • 如果 perm_mask[k, i, j] = 1,则在批次 k 中 i 不关注 j。
  • 如果未设置,每个标记都会关注其他所有标记(完全双向注意力)。仅在预训练期间(用于定义分解顺序)或用于顺序解码(生成)时使用。
  • target_mapping(形状为(batch_size, num_predict, sequence_length)torch.FloatTensor可选)- 用于指示要使用的输出标记的掩码。如果target_mapping[k, i, j] = 1,则第 k 批次中的第 i 个预测位于第 j 个标记上。仅在预训练期间用于部分预测或用于顺序解码(生成)。
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应一个句子 A标记,
  • 1 对应一个句子 B标记。
  • 什么是标记类型 ID?
  • input_mask(形状为batch_size, sequence_lengthtorch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。负的attention_mask,即对于真实标记为 0,对于填充为 1,这保留了与原始代码库的兼容性。选择的掩码值在[0, 1]中:
  • 1 用于被masked的标记,
  • 0 用于未被masked的标记。
  • 您只能使用input_maskattention_mask中的一个。
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]中:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
  • return_dictbool可选)- 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.models.xlnet.modeling_xlnet.XLNetModelOutput 或tuple(torch.FloatTensor)

一个 transformers.models.xlnet.modeling_xlnet.XLNetModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(XLNetConfig)和输入的各种元素。

  • last_hidden_state(形状为(batch_size, num_predict, hidden_size)torch.FloatTensor)- 模型最后一层的隐藏状态序列。
    num_predict 对应于target_mapping.shape[1]。如果target_mappingNone,则num_predict对应于sequence_length
  • mems(长度为config.n_layersList[torch.FloatTensor])- 包含预先计算的隐藏状态。可以用于加速顺序解码(请参见mems输入)。将其过去传递给此模型的标记 id 不应作为input_ids传递,因为它们已经计算过。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每层输出的隐藏状态以及初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

XLNetModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行前后处理步骤,而后者会默默忽略它们。

示例:

>>> from transformers import AutoTokenizer, XLNetModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
>>> model = XLNetModel.from_pretrained("xlnet-base-cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

XLNetLMHeadModel

class transformers.XLNetLMHeadModel

<来源>

( config )

参数

  • config(XLNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有语言建模头的 XLNet 模型(线性层,权重与输入嵌入绑定)。

此模型继承自 PreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None mems: Optional = None perm_mask: Optional = None target_mapping: Optional = None token_type_ids: Optional = None input_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_mems: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()以获取详细信息。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选) — 避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
  • 对于not masked的标记为 1。
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • mems(长度为config.n_layersList[torch.FloatTensor]) — 包含预先计算的隐藏状态(参见下面的mems输出)。可用于加速顺序解码。将其过去传递给此模型的标记 ID 不应作为input_ids传递,因为它们已经计算过。
    use_mems必须设置为True才能使用mems
  • perm_mask(形状为(batch_size, sequence_length, sequence_length)torch.FloatTensor可选) — 用于指示每个输入标记的注意力模式的掩码,值在[0, 1]中选择:
  • 如果perm_mask[k, i, j] = 0,则在批次 k 中,i 参与 j;
  • 如果perm_mask[k, i, j] = 1,则在批次 k 中,i 不参与 j。
  • 如果未设置,则每个标记都会关注其他所有标记(完全双向注意力)。仅在预训练期间使用(用于定义分解顺序)或用于顺序解码(生成)。
  • target_mapping (torch.FloatTensor,形状为 (batch_size, num_predict, sequence_length)可选) — 用于指示要使用的输出标记。如果 target_mapping[k, i, j] = 1,则批次 k 中的第 i 个预测位于第 j 个标记上。仅在预训练期间用于部分预测或用于顺序解码(生成)。
  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在 [0, 1]
  • 0 对应于 句子 A 的标记,
  • 1 对应于 句子 B 的标记。
  • 什么是标记类型 ID?
  • input_mask (torch.FloatTensor,形状为 batch_size, sequence_length可选) — 用于避免在填充标记索引上执行注意力的掩码。是 attention_mask 的负值,即对于真实标记为 0,对于填充标记为 1,这是为了与原始代码基础保持兼容性。掩码值选择在 [0, 1]
  • 1 表示被掩盖的标记,
  • 0 表示未被掩盖的标记。
  • 您只能使用 input_maskattention_mask 中的一个。
  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1]
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为关联向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的 attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor,形状为 (batch_size, num_predict)可选) — 用于掩盖语言建模的标签。num_predict 对应于 target_mapping.shape[1]。如果 target_mappingNone,则 num_predict 对应于 sequence_length
    标签应该对应于应该被预测的被掩盖输入词,并取决于 target_mapping。请注意,为了执行标准的自回归语言建模,必须向 input_ids 添加一个  标记(请参见 prepare_inputs_for_generation 函数和下面的示例)
    索引选择在 [-100, 0, ..., config.vocab_size] 所有标签设置为 -100 的将被忽略,损失仅计算标签在 [0, ..., config.vocab_size] 中的标签

返回

transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(XLNetConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 labels 时返回) 语言建模损失(用于下一个标记预测)。
  • logits (torch.FloatTensor,形状为 (batch_size, num_predict, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
    num_predict 对应于 target_mapping.shape[1]。如果 target_mappingNone,那么 num_predict 对应于 sequence_length
  • mems (List[torch.FloatTensor],长度为 config.n_layers) — 包含预先计算的隐藏状态。可以用于加速顺序解码。将其过去传递给此模型的标记 id 不应作为 input_ids 传递,因为它们已经计算过了。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出以及初始嵌入输出的隐藏状态。
  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每个层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

XLNetLMHeadModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用 Module 实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, XLNetLMHeadModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-large-cased")
>>> model = XLNetLMHeadModel.from_pretrained("xlnet-large-cased")
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor(
...     tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
...     0
... )  # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
>>> target_mapping = torch.zeros(
...     (1, 1, input_ids.shape[1]), dtype=torch.float
... )  # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
...     0, 0, -1
... ] = 1.0  # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[
...     0
... ]  # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
>>> input_ids = torch.tensor(
...     tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
... ).unsqueeze(
...     0
... )  # We will predict the masked token
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
>>> assert labels.shape[0] == 1, "only one word will be predicted"
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[
...     :, :, -1
... ] = 1.0  # Previous tokens don't see last token as is done in standard auto-regressive lm training
>>> target_mapping = torch.zeros(
...     (1, 1, input_ids.shape[1]), dtype=torch.float
... )  # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[
...     0, 0, -1
... ] = 1.0  # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
>>> loss = outputs.loss
>>> next_token_logits = (
...     outputs.logits
... )  # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]

XLNetForSequenceClassification

class transformers.XLNetForSequenceClassification

< source >

( config )

参数

  • config(XLNetConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

在顶部具有序列分类/回归头的 XLNet 模型(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。检查超类文档以获取库实现的所有模型的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None mems: Optional = None perm_mask: Optional = None target_mapping: Optional = None token_type_ids: Optional = None input_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_mems: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassificationOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为 (batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:
  • 1 表示未被 masked 的标记,
  • 0 表示被 masked 的标记。
  • 什么是注意力掩码?
  • mems(长度为 config.n_layersList[torch.FloatTensor])— 包含预先计算的隐藏状态(参见下面的 mems 输出)。可用于加速顺序解码。将其过去传递给此模型的标记 id 不应作为 input_ids 传递,因为它们已经计算过。
    use_mems 必须设置为 True 才能使用 mems
  • perm_mask(形状为 (batch_size, sequence_length, sequence_length)torch.FloatTensor可选)— 用于指示每个输入标记的注意力模式的掩码,值在 [0, 1] 中选择:
  • 如果 perm_mask[k, i, j] = 0,则在批次 k 中,i 关注 j;
  • 如果 perm_mask[k, i, j] = 1,则在批次 k 中,i 不关注 j。
  • 如果未设置,则每个标记都关注所有其他标记(完全双向注意力)。仅在预训练期间(用于定义分解顺序)或用于顺序解码(生成)时使用。
  • target_mapping(形状为 (batch_size, num_predict, sequence_length)torch.FloatTensor可选)— 用于指示要使用的输出标记的掩码。如果 target_mapping[k, i, j] = 1,则批次 k 中的第 i 个预测位于第 j 个标记上。仅在预训练期间用于部分预测或用于顺序解码(生成)。
  • token_type_ids(形状为 (batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:
  • 0 对应于 sentence A 标记,
  • 1 对应于 sentence B 标记。
  • 什么是标记类型 ID?
  • input_mask(形状为 batch_size, sequence_lengthtorch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。attention_mask 的负值,即对于真实标记为 0,对于填充为 1,这是为了与原始代码库保持兼容性。掩码值在 [0, 1] 中选择:
  • 1 表示被 masked 的标记,
  • 0 表示未被 masked 的标记。
  • 您只能使用 input_maskattention_mask 中的一个。
  • head_mask(形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值在 [0, 1] 中选择:
  • 1 表示头部未被 masked
  • 0 表示头部被 masked
  • inputs_embeds(形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权,以便将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为 (batch_size,)torch.LongTensor可选)— 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 中。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassificationOutput 或tuple(torch.FloatTensor)

一个 transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassificationOutput 或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含根据配置(XLNetConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供label时返回)- 分类(如果 config.num_labels==1 则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)- 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。
  • memsList[torch.FloatTensor],长度为config.n_layers)- 包含预先计算的隐藏状态。可以用于加速顺序解码(参见mems输入)。将其过去传递给该模型的令牌 id 不应作为input_ids传递,因为它们已经被计算过。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层的输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每一层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

XLNetForSequenceClassification 前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, XLNetForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
>>> model = XLNetForSequenceClassification.from_pretrained("xlnet-base-cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = XLNetForSequenceClassification.from_pretrained("xlnet-base-cased", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, XLNetForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
>>> model = XLNetForSequenceClassification.from_pretrained("xlnet-base-cased", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = XLNetForSequenceClassification.from_pretrained(
...     "xlnet-base-cased", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

XLNetForMultipleChoice

class transformers.XLNetForMultipleChoice

<来源>

( config )

参数

  • config(XLNetConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有多选分类头的 XLNet 模型(池化输出上的线性层和 softmax),例如用于 RACE/SWAG 任务。

该模型继承自 PreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

该模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

( input_ids: Optional = None token_type_ids: Optional = None input_mask: Optional = None attention_mask: Optional = None mems: Optional = None perm_mask: Optional = None target_mapping: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_mems: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoiceOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。在[0, 1]中选择的掩码值:
  • 对于未被“masked”的标记为 1,
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • mems(长度为config.n_layersList[torch.FloatTensor])- 包含预先计算的隐藏状态(参见下面的mems输出)。可用于加速顺序解码。将其过去提供给此模型的标记 id 不应作为input_ids传递,因为它们已经计算过。
    use_mems必须设置为True才能使用mems
  • perm_mask(形状为(batch_size, sequence_length, sequence_length)torch.FloatTensor可选)- 用于指示每个输入标记的注意力模式的掩码,选择的值在[0, 1]中:
  • 如果perm_mask[k, i, j] = 0,则在批次 k 中,i 参与 j;
  • 如果perm_mask[k, i, j] = 1,则在批次 k 中,i 不参与 j。
  • 如果未设置,则每个标记都会关注其他所有标记(完全双向注意力)。仅在预训练期间(用于定义分解顺序)或用于顺序解码(生成)时使用。
  • target_mapping(形状为(batch_size, num_predict, sequence_length)torch.FloatTensor可选)- 用于指示要使用的输出标记的掩码。如果target_mapping[k, i, j] = 1,则批次 k 中的第 i 个预测在第 j 个标记上。仅在预训练期间用于部分预测或用于顺序解码(生成)。
  • token_type_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • input_mask(形状为batch_size, num_choices, sequence_lengthtorch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。attention_mask的负值,即对于真实标记为 0,对于填充为 1,这是为了与原始代码库保持兼容性。在[0, 1]中选择的掩码值:
  • 对于被masked的标记为 1,
  • 对于未被“masked”的标记为 0。
  • 您只能使用input_maskattention_mask中的一个。
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。在[0, 1]中选择的掩码值:
  • 1 表示头部未被“masked”,
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]范围内,其中num_choices是输入张量的第二维的大小。(见上面的input_ids

返回

transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoiceOutput 或tuple(torch.FloatTensor)

一个 transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoiceOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(XLNetConfig)和输入的不同元素。

  • loss(形状为*(1,)*的torch.FloatTensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, num_choices)torch.FloatTensor)— num_choices是输入张量的第二维。(参见上面的input_ids)。
    SoftMax 之前的分类分数。
  • mems(长度为config.n_layersList[torch.FloatTensor])— 包含预计算的隐藏状态。可以用于加速顺序解码。将过去给定给该模型的令牌 id 不应作为input_ids传递,因为它们已经计算过。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
    模型在每个层的输出处的隐藏状态加上初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

XLNetForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, XLNetForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
>>> model = XLNetForMultipleChoice.from_pretrained("xlnet-base-cased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits


Transformers 4.37 中文文档(六十三)(4)https://developer.aliyun.com/article/1564120

相关文章
|
4月前
|
PyTorch 算法框架/工具 计算机视觉
Transformers 4.37 中文文档(六十四)(4)
Transformers 4.37 中文文档(六十四)
23 1
|
4月前
|
自然语言处理 PyTorch TensorFlow
Transformers 4.37 中文文档(五十四)(6)
Transformers 4.37 中文文档(五十四)
21 0
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(五十四)(1)
Transformers 4.37 中文文档(五十四)
28 0
|
4月前
|
缓存 PyTorch 算法框架/工具
Transformers 4.37 中文文档(五十四)(5)
Transformers 4.37 中文文档(五十四)
25 0
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(五十四)(7)
Transformers 4.37 中文文档(五十四)
21 0
|
4月前
|
存储 算法 PyTorch
Transformers 4.37 中文文档(五十四)(3)
Transformers 4.37 中文文档(五十四)
32 0
|
4月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(五十四)(2)
Transformers 4.37 中文文档(五十四)
25 0
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(六十三)(4)
Transformers 4.37 中文文档(六十三)
17 0
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(六十三)(2)
Transformers 4.37 中文文档(六十三)
27 0
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(六十三)(1)
Transformers 4.37 中文文档(六十三)
29 0