​「Python大数据」VOC数据清洗

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 使用Python进行数据清洗,脚本涉及VOC数据的读取与分词。通过jieba进行中文分词,去除停用词,将清洗后的评论存入新Excel列。执行`clean.py`脚本,读取Excel文件,对每个sheet的评论内容进行处理,保留名词并移除停用词和标点,结果保存至`clean/cleaned_voc.xlsx`。关键文件包括自定义词典`luyouqi.txt`和停用词列表`stopwordsfull`。

前言

本文主要介绍通过python实现数据清洗、脚本开发、办公自动化。读取voc数据,存储新清洗后的voc数据数据。

一、业务逻辑

  • 读取voc数据采集的数据
  • 批处理,使用jieba进行分词,去除停用词,清洗后的评论存储到新的列中
  • 保存清洗后的数据到新的Excel文件中

    二、具体产出

    在这里插入图片描述

三、执行脚本

python clean.py

四、脚本

# voc数据清洗
import pandas as pd
import jieba
import jieba.posseg as pseg
from collections import Counter
import re

fileName = "100070291457" # sku

# 加载停用词
with open('stopwordsfull', 'r', encoding='utf-8',errors='replace') as f:
    stopwords = [line.strip() for line in f.readlines()]

# 加载自定义词典
jieba.load_userdict("luyouqi.txt")  # luyouqi.txt is your custom dictionary

# 读取Excel文件中的所有表格
xls = pd.ExcelFile('file/'+fileName+'.xlsx')
sheet_names = xls.sheet_names  # 获取所有sheet名称

# 创建一个新的Dataframe存储清洗后的数据
cleaned_data = pd.DataFrame()

for sheet_name in sheet_names:
    # 读取每个sheet的数据
    df = pd.read_excel(xls, sheet_name)

    # 创建新的列存储清洗后的评论
    df['cleaned_comments'] = ''


    for i, row in df.iterrows():
        comment = str(row['content'])
                # 使用jieba进行分词和词性标注,只保留名词且不在停用词表里的词
        comment = re.sub(r'[^\w\s\u4e00-\u9fa5]', '', comment)  # 移除标点符号
        # 使用jieba进行分词
        segs = jieba.lcut(comment)
        # 去除停用词
        segs = [seg for seg in segs if seg not in stopwords and len(seg)>1]

        # 将清洗后的评论存储到新的列中
        df.at[i, 'cleaned_comments'] = ' '.join(segs)


    # 将清洗后的数据添加到新的Dataframe中
    cleaned_data = cleaned_data._append(df, ignore_index=True)
    # 保存清洗后的数据到新的Excel文件中
    cleaned_data.to_excel('clean/cleaned_voc'+fileName+'.xlsx', index=False)

五、关键文件

luyouqi.text 分词字典(片段)

2.4G
2.5G口
软路由
2.5G
WiFi
WiFi5
WiFi6
WiFi4

stopwordsfull 停用词(片段)

客户
层面
菜鸟
滑丝
换货
三思
固记
厂商
吸引力
体会
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
76 4
|
25天前
|
数据采集 数据挖掘 数据格式
使用Python进行数据清洗的实用指南
在数据分析的世界里,"垃圾进,垃圾出"这句老话再贴切不过。数据清洗作为数据分析前的关键步骤,直接影响着分析结果的准确性与可靠性。本文将通过浅显易懂的语言和实际代码示例,带你掌握如何使用Python及其强大的库进行数据清洗,从缺失值处理到异常值检测,再到数据格式转换和重复数据删除,让你的数据准备工作变得既高效又专业。
55 2
|
1月前
|
数据采集 机器学习/深度学习 数据挖掘
利用Python进行高效的数据清洗与预处理
在数据科学和机器学习项目中,数据清洗与预处理是至关重要的一步。本文将介绍如何使用Python中的Pandas库进行高效的数据清洗与预处理。我们将探讨如何处理缺失值、异常值、重复数据,以及如何进行数据类型转换和特征工程。此外,还将介绍一些实用的技巧来优化数据处理的性能。
|
2月前
|
数据采集 数据可视化 大数据
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
这篇文章介绍了如何使用Python中的matplotlib和numpy库来创建箱线图,以检测和处理数据集中的异常值。
60 1
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
|
2月前
|
数据采集 机器学习/深度学习 算法
大数据中数据清洗
【10月更文挑战第19天】
187 2
|
2月前
|
数据采集 算法 大数据
大数据中数据清洗 (Data Cleaning)
【10月更文挑战第17天】
225 1
|
1月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
机器学习/深度学习 数据可视化 大数据
驾驭股市大数据:Python实战指南
【10月更文挑战第1天】随着信息技术的发展,投资者现在能够访问到前所未有的海量金融数据。本文将指导您如何利用Python来抓取当前股市行情的大数据,并通过分析这些数据为自己提供决策支持。我们将介绍从数据获取到处理、分析以及可视化整个流程的技术方法。
120 2
|
2月前
|
数据采集 机器学习/深度学习 数据挖掘
利用Python进行数据清洗:技巧与实践
在数据科学和分析领域,数据清洗是一项基础且关键的任务。本文将带你了解数据清洗的重要性,并深入探讨使用Python进行数据清洗的多种技巧。我们将通过Pandas库来展示如何处理缺失数据、异常值、重复数据以及数据类型转换等常见问题。文章将提供实用的代码示例和最佳实践,帮助你高效地清洗数据,为数据分析和机器学习项目打下坚实的基础。
|
2月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
134 0

相关产品

  • 云原生大数据计算服务 MaxCompute