技术经验解读:【Java】事件驱动模型和观察者模式

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 技术经验解读:【Java】事件驱动模型和观察者模式

你有一件事情,做这件事情的过程包含了许多职责单一的子过程。这样的情况及其常见。当这些子过程有如下特点时,我们应该考虑设计一种合适的框架,让框架来完成一些业务无关的事情,从而使得各个子过程的开发可以专注于自己的业务。


这些子过程有一定的执行次序;


这些子过程之间需要较灵活的跳转;


这些子过程也许需要围绕同一个上下文做操作;


此时可以考虑使用事件驱动的方式来组织这些子过程,此时这些子过程可以被称之为事件处理器(或监听器),而将事件处理器组织起来的管理者,叫做事件中心。最显而易见的实现方式,是观察者模式,或者监听者模式。作为一个例子,考虑一个消息转发系统,它从上游接收消息,然后转发给正确的下游用户。整个过程可以拆分为消息解析、消息存储、消息发送等步骤。


事件Event


首先定义事件Event。事件将作为一个基本元素,在处理器和事件中心之间建立其连线。这里为了能够统一处理异常。以及针对异常打出日志,除了业务相关的事件,还增加了异常事件和日志事件。当然相应的也应该新增与之对应的事件处理器。


1 package me.test.eventcenter;


2


3 /


4 Created by chng on 2015/12/18.


5 /


6 public class EventName {


7


8 private final String name;


9 public EventName(String name) {


10 this.name = name;


11 }


12


13 public static EventName msg_received = new EventName("msg_received");


14 public static EventName msg_resolved = new EventName("msg_resolved");


15 public static EventName msg_stored = new EventName("msg_stored");


16 public static EventName msg_pushed = new EventName("msg_pushed");


17 public static EventName exception_occured = new EventName("exception_occured");


18 public static EventName end_and_log = new EventName("end_and_log");


19


20 public String getName() {


21 return name;


22 }


23 }


事件处理器 EventHandler


随后,定义一个简单的事件处理器的抽象类,其中包含一个单例的事件中心,每个处理器通过持有这个事件中心来执行注册自己(即订阅一个事件)和呼起下一个事件的操作。


package me.test.eventcenter.handler;


import me.test.eventcenter.EventCenter;


import org.springframework.beans.factory.InitializingBean;


import javax.annotation.Resource;


/


Created by chng on 2015/12/18.


/


public abstract class EventHandler implements InitializingBean {


@Resource


EventCenter eventCenter;


public abstract void handle(Object ... param);


}


事件中心 EventCenter


有了事件和事件处理器,接下来定义一个事件中心,将二者粘起来。


package me.test.eventcenter;


import com.google.common.collect.Lists;


import com.google.common.collect.Maps;


import me.test.eventcenter.handler.EventHandler;


import org.springframework.stereotype.Component;


import org.springframework.util.CollectionUtils;


import java.util.List;


import java.util.Map;


/


Created by chng on 2015/12/18.


/


@Component


public class EventCenter {


private Map

/


向事件中心广播一个时间,驱使事件中心执行该事件的处理器


@param eventName


//代码效果参考:http://www.jhylw.com.cn/325620149.html

@param param

/


public void fire(EventName eventName, Object ... param) {


System.out.println(eventName.getName());


List handlerList = regTable.get(eventName);


if(CollectionUtils.isEmpty(handlerList)) {


// log


return;


}


for(EventHandler handler: handlerList) {


try {


handler.handle(param);


} catch (Exception e) {


fire(EventName.exception_occured, e);


}


}


}


/


将自己注册为事件中心的某个事件的处理器


@param eventName


@param handler


/


public void register(EventName eventName, EventHandler handler) {


List handlerList = regTable.get(eventName);


if(null == handlerList) {


handlerList = Lists.newLinkedList();


}


handlerList.add(handler);


regTable.put(eventName, handlerList);


}


}


在事件中心中,事件和处理器之间的关系表示为一个HashMap,每个事件可以被多个处理器监听,而一个处理器只能监听一个事件(这样的关系并非是固定的,也可在运行时动态地改变)。当呼起一个事件时,事件中心找到该事件的监听者,逐个调用他们的处理方法。将各子模块的执行集中在这里管理,还有两个额外的好处:


1 如果发生异常,则呼起异常处理器。这样,一旦业务模块发生了不得不终止整个过程的时候,不需要自己写try/catch子句,而只需要将异常往上抛,直到抛给框架层,由它来做这些统一的事情。然而这并不意味着各业务模块彻彻底底地摆脱了难看的try/catch/finally,运行时发生的异常被catch后,并非都可以直接END,何去何从仍然视情况而定,直接将异常吞掉也未尝不可能。


2 打日志的活儿交给EventCenter就好了,没人比它更清楚当前执行到了哪一步。而各子模块里面,可以省去许多散布在各处的日志语句。对于散弹式日志的问题,解决方法不止一种,AOP也是个不错的选择。


测试


为了让整个过程跑起来,我们只需要发起一个初始的事件,将所有的事件处理器都依次驱动起来:


/


Created by OurEDA on 2015/12/18.


/


public class TestEventCenter extends BaseTest {


@Resource


EventCenter eventCenter;


@Test


public void test() {


RawMessage rawMessage = new RawMessage("NotifyType: amq");


rawMessage.setType(RawMessage.MessageType.amq);


eventCenter.fire(EventName.msg_received, notify);


}


}


以测试通过为目标,我们开始定义一系列的EventHandler,并将这些Handler注册到合适的事件上。例如一个消息解析的Handler,对msg_receive事件感兴趣,解析完成后将发起msg_store事件,那么:


package me.test.eventcenter.handler;


import me.test.eventcenter.;


import me.test.messagedo.Message;


import me.test.messagedo.RawMessage;


import me.test.resolvers.MsgResolverList;


import org.springframework.beans.factory.InitializingBean;


import org.springframework.stereotype.Component;


import javax.annotation.Resource;


/**


Created by chng on 2015/12/18.


/


@Component


public class MsgResolveHandler extends EventHandler implements InitializingBean {


@Resource


private MsgResolverList resolverList;


@Override


public void handle(Object... param) {


/**


Resolver


/


RawMessage rm = (RawMessage) param【0】;


Message message = resolverList.resolve(rm);


eventCenter.fire(EventName.msg_resolved, message);


}


public void afterPropertiesSet() throws Exception {


eventCenter.register(EventName.msg_received, this);


}


}


可以看到,对象在初始阶段把自己(this)注册到了事件中心里。handler方法则只关心如何解析消息,不需要关系别的事情。针对不同类型的消息,解析器可以写成Map的形式,一种类型对应一个解析器;如果消息的分类比较复杂,还可以写成职责链的形式当然这都无关紧要,我们需要知道的是,这个模块只解析消息,与其他子模块之间是完全解耦的。


例如,一种可能的解析器组合体是这样的:


MsgResolver.java (interface)


package me.test.resolvers;


import me.test.messagedo.Message;


import me.test.messagedo.RawMessage;


/**


Created by OurEDA on 2015/12/18.


/


public interface MsgResolver {


public boolean canResolve(RawMessage rm);


public Message resolve(RawMessage rm);


}


MsgResolverList.java


package me.test.resolvers;


import me.test.messagedo.Message;


import me.test.messagedo.RawMessage;


import org.springframework.stereotype.Component;


import java.util.List;


/**


Created by chng on 2015/12/18.


*/


@Component


public class MsgResolverList implements MsgResolver{


//职责链


private List resolvers;


public List getResolvers() {


return resolvers;


}


public void setResolvers(List resolvers) {


this.resolvers = resolvers;


}


public boolean canResolve(RawMessage rawMessage) {


return true;


}


public Message resolve(RawMessage rawMessage) {


for(MsgResolver resolver: resolvers) {


if(resolver.canResolve(rawMessage)) {


System.out.println("NotifyType: "+rawMessage.type);


return resolver.resolve(rawMessage);


}


}


return null;


}


}


不必额外打日志,用例的输出是这样的:


哪一步出了问题,出了什么问题,通通一目了然。


其他:


1 上下文 Context


各个处理器都围绕一个上下文做处理,此例为了体现通用性,上下文直接用Object表示。在实际的场景下,则需要一个统一的结构体。不同的Handler将对该统一上下文的不同内容感兴趣。


2 线程封闭 ThreadLocal


当有多个线程都在事件中心中进行周转时,还需要考虑线程安全问题,保证线程的调度不会对事件处理器的呼起次序造成干扰。因此整个事件中心和上下文,都需要做隔离。


3 反思


上面这种写法有两个明确的缺点:事件的注册操作写死在每个处理器的初始化代码中,一来缺乏灵活性,二来对于各Handler是如何组织起来的,没有一个统一而清晰的bigmap。

相关文章
|
29天前
|
监控 Cloud Native Java
Quarkus 云原生Java框架技术详解与实践指南
本文档全面介绍 Quarkus 框架的核心概念、架构特性和实践应用。作为新一代的云原生 Java 框架,Quarkus 旨在为 OpenJDK HotSpot 和 GraalVM 量身定制,显著提升 Java 在容器化环境中的运行效率。本文将深入探讨其响应式编程模型、原生编译能力、扩展机制以及与微服务架构的深度集成,帮助开发者构建高效、轻量的云原生应用。
140 44
|
22天前
|
安全 Java API
Java Web 在线商城项目最新技术实操指南帮助开发者高效完成商城项目开发
本项目基于Spring Boot 3.2与Vue 3构建现代化在线商城,涵盖技术选型、核心功能实现、安全控制与容器化部署,助开发者掌握最新Java Web全栈开发实践。
213 1
|
2月前
|
安全 Java 编译器
new出来的对象,不一定在堆上?聊聊Java虚拟机的优化技术:逃逸分析
逃逸分析是一种静态程序分析技术,用于判断对象的可见性与生命周期。它帮助即时编译器优化内存使用、降低同步开销。根据对象是否逃逸出方法或线程,分析结果分为未逃逸、方法逃逸和线程逃逸三种。基于分析结果,编译器可进行同步锁消除、标量替换和栈上分配等优化,从而提升程序性能。尽管逃逸分析计算复杂度较高,但其在热点代码中的应用为Java虚拟机带来了显著的优化效果。
64 4
|
2月前
|
Java API Maven
2025 Java 零基础到实战最新技术实操全攻略与学习指南
本教程涵盖Java从零基础到实战的全流程,基于2025年最新技术栈,包括JDK 21、IntelliJ IDEA 2025.1、Spring Boot 3.x、Maven 4及Docker容器化部署,帮助开发者快速掌握现代Java开发技能。
473 1
|
12天前
|
前端开发 Java API
Java入门教程:掌握Spring MVC的双向数据绑定技术
以上步骤展示了如何利用 Spring MVC 实现双向数据绑定:从显示表单、提交表单、验证输入、直至返回结果页面都涉及到不同层次间交互过程,在整个过程都无需手动去编写繁琐代码去手动获取或设置每一项值。
96 20
|
2月前
|
Java 测试技术 API
2025 年 Java 开发者必知的最新技术实操指南全览
本指南涵盖Java 21+核心实操,详解虚拟线程、Spring Boot 3.3+GraalVM、Jakarta EE 10+MicroProfile 6微服务开发,并提供现代Java开发最佳实践,助力开发者高效构建高性能应用。
316 4
|
2月前
|
缓存 前端开发 Java
Java类加载机制与双亲委派模型
本文深入解析Java类加载机制,涵盖类加载过程、类加载器、双亲委派模型、自定义类加载器及实战应用,帮助开发者理解JVM核心原理与实际运用。
|
23天前
|
安全 Cloud Native Java
Java 模块化系统(JPMS)技术详解与实践指南
本文档全面介绍 Java 平台模块系统(JPMS)的核心概念、架构设计和实践应用。作为 Java 9 引入的最重要特性之一,JPMS 为 Java 应用程序提供了强大的模块化支持,解决了长期存在的 JAR 地狱问题,并改善了应用的安全性和可维护性。本文将深入探讨模块声明、模块路径、访问控制、服务绑定等核心机制,帮助开发者构建更加健壮和可维护的 Java 应用。
125 0
|
2月前
|
JavaScript 安全 前端开发
Java开发:最新技术驱动的病人挂号系统实操指南与全流程操作技巧汇总
本文介绍基于Spring Boot 3.x、Vue 3等最新技术构建现代化病人挂号系统,涵盖技术选型、核心功能实现与部署方案,助力开发者快速搭建高效、安全的医疗挂号平台。
147 4
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。

热门文章

最新文章