基于SpringBoot+协同过滤算法的家政服务平台设计和实现(源码+LW+调试文档+讲解等)

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 基于SpringBoot+协同过滤算法的家政服务平台设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W+,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗


🌟文末获取源码+数据库🌟

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人


Java精品实战案例《600套》


2023-2025年最值得选择的Java毕业设计选题大全:1000个热门选题推荐✅✅✅


详细视频演示:

请联系我获取更详细的演示视频


具体实现截图:

系统介绍:

协同过滤算法是一种较为著名和常用的推荐算法,它基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐。基于协同过滤算法的家政服务平台就是典型的信息管理平台,它主要通过使用Springboot框架作为开发工具,采用B/S架构、Java语言进行设计与实现,后台采用MySQL进行数据库管理。本文从技术可行性、经济可行性、操作可行性、用户的需求、数据库设计与系统实现方面进行了详细阐述。通过使用该平台,可以让家政服务的工作实现简易化、系统化、自动化、规范化与智能化,从而能够提高家政服务行业的管理效率。


家政服务平台的主要功能包括:家政人员管理、订单管理、用户预约、服务项目信息、保洁常识、核酸检测管理等模块。本系统代码的复用率高,系统维护代价小,具有方便、灵活、高效等特征。


关键词:家政服务;Springboot框架;数据库


家政服务平台项目的概述设计分析,主要是家政服务平台的具体分析,进行数据库的是设计,数据采用mysql数据库,并且对于系统的设计采用比较人性化的操作设计,对于系统出现的错误信息可以及时做出处理及反馈。


家政服务平台基于现有的网络开发,可以实现管理员,用户管理(管理员、用户注册)更多管理(订单管理、家政人员管理、服务项目管理、类型管理、用户预约、核酸检测管理)等详细的了解及统计分析。实现用户:公告栏、家政人员信息、公司动态、服务项目、保洁常识内容等功能,根据系统功能需求建立的模块关系图如下图:


image.png




部分代码参考:  

/**

* 登录相关

*/

@RequestMapping("users")

@RestController

public class UserController{

 

   @Autowired

   private UserService userService;

 

   @Autowired

   private TokenService tokenService;

   /**

    * 登录

    */

   @IgnoreAuth

   @PostMapping(value = "/login")

   public R login(String username, String password, String role, HttpServletRequest request) {

       UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));

       if(user != null){

           if(!user.getRole().equals(role)){

               return R.error("权限不正常");

           }

           if(user==null || !user.getPassword().equals(password)) {

               return R.error("账号或密码不正确");

           }

           String token = tokenService.generateToken(user.getId(),username, "users", user.getRole());

           return R.ok().put("token", token);

       }else{

           return R.error("账号或密码或权限不对");

       }

   }

 

   /**

    * 注册

    */

   @IgnoreAuth

   @PostMapping(value = "/register")

   public R register(@RequestBody UserEntity user){

//        ValidatorUtils.validateEntity(user);

       if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {

           return R.error("用户已存在");

       }

       userService.insert(user);

       return R.ok();

   }

   /**

    * 退出

    */

   @GetMapping(value = "logout")

   public R logout(HttpServletRequest request) {

       request.getSession().invalidate();

       return R.ok("退出成功");

   }

 

   /**

    * 密码重置

    */

   @IgnoreAuth

   @RequestMapping(value = "/resetPass")

   public R resetPass(String username, HttpServletRequest request){

       UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));

       if(user==null) {

           return R.error("账号不存在");

       }

       user.setPassword("123456");

       userService.update(user,null);

       return R.ok("密码已重置为:123456");

   }

 

   /**

    * 列表

    */

   @RequestMapping("/page")

   public R page(@RequestParam Map<String, Object> params,UserEntity user){

       EntityWrapper<UserEntity> ew = new EntityWrapper<UserEntity>();

       PageUtils page = userService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.allLike(ew, user), params), params));

       return R.ok().put("data", page);

   }

   /**

    * 信息

    */

   @RequestMapping("/info/{id}")

   public R info(@PathVariable("id") String id){

       UserEntity user = userService.selectById(id);

       return R.ok().put("data", user);

   }

 

   /**

    * 获取用户的session用户信息

    */

   @RequestMapping("/session")

   public R getCurrUser(HttpServletRequest request){

       Integer id = (Integer)request.getSession().getAttribute("userId");

       UserEntity user = userService.selectById(id);

       return R.ok().put("data", user);

   }

   /**

    * 保存

    */

   @PostMapping("/save")

   public R save(@RequestBody UserEntity user){

//        ValidatorUtils.validateEntity(user);

       if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {

           return R.error("用户已存在");

       }

       userService.insert(user);

       return R.ok();

   }

   /**

    * 修改

    */

   @RequestMapping("/update")

   public R update(@RequestBody UserEntity user){

//        ValidatorUtils.validateEntity(user);

       userService.updateById(user);//全部更新

       return R.ok();

   }

   /**

    * 删除

    */

   @RequestMapping("/delete")

   public R delete(@RequestBody Integer[] ids){

       userService.deleteBatchIds(Arrays.asList(ids));

       return R.ok();

   }

}


论文参考:

源码获取:

文章下方名片联系我即可~

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻


2023-2025年最值得选择的Java毕业设计选题大全:1000个热门选题推荐✅✅✅


Java精品实战案例《600套》


相关文章
|
9月前
|
前端开发 Cloud Native Java
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
|
11月前
|
JavaScript Java 测试技术
基于SpringBoot+Vue实现的留守儿童爱心网站设计与实现(计算机毕设项目实战+源码+文档)
博主是一位全网粉丝超过100万的CSDN特邀作者、博客专家,专注于Java、Python、PHP等技术领域。提供SpringBoot、Vue、HTML、Uniapp、PHP、Python、NodeJS、爬虫、数据可视化等技术服务,涵盖免费选题、功能设计、开题报告、论文辅导、答辩PPT等。系统采用SpringBoot后端框架和Vue前端框架,确保高效开发与良好用户体验。所有代码由博主亲自开发,并提供全程录音录屏讲解服务,保障学习效果。欢迎点赞、收藏、关注、评论,获取更多精品案例源码。
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
312 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
222 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
231 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
175 6
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
190 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
197 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
3月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
277 14