开源模型破局OpenAI服务限制,15分钟灵活搭建RAG和Agent应用

简介: 今天,我们做了两个实验,目标在15分钟内,完成下载社区的开源模型,部署成API,替换LlamaIndex中RAG和LangChain中OpenAI接口Agent的最佳实践,并取得符合预期的结果。

实验一

实验目标:Qwen2+Ollama+LlamaIndex实现RAG应用

实验时长:15分钟

运行设备:Mac,CPU,GPU均可

环境安装:

pip install llama-index llama_index.llms.ollama llama-index-embeddings-huggingface modelscope

复制模型路径,创建名为“ModelFile”的meta文件,内容如下:

FROM /mnt/workspace/qwen2-7b-instruct-q5_k_m.gguf
# set the temperature to 0.7 [higher is more creative, lower is more coherent]
PARAMETER temperature 0.7
PARAMETER top_p 0.8
PARAMETER repeat_penalty 1.05
TEMPLATE """{{ if and .First .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
{{ .Response }}"""
# set the system message
SYSTEM """
You are a helpful assistant.
"""

使用ollama create命令创建自定义模型并运行

ollama create myqwen2 --file ./ModelFile
ollama run myqwen2

然后运行如下RAG代码:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.core.embeddings import resolve_embed_model
from llama_index.llms.ollama import Ollama
import sys
# load doc qwen2 readme
documents = SimpleDirectoryReader("/mnt/workspace/content").load_data()
# bge embedding model
Settings.embed_model = resolve_embed_model("local:/mnt/workspace/bge-base-en-v1.5")
# ollama
Settings.llm = Ollama(model="myqwen2", request_timeout=30.0)
# create index
index = VectorStoreIndex.from_documents(documents)
# Either way we can now query the index
query_engine = index.as_query_engine()
response = query_engine.query("What is the maximum context length supported by Qwen2?")
print(response)

Output

实验二

实验目标:Qwen2+Ollama+Langchain实现Agent应用

实验时长:15分钟

运行设备:Mac,CPU,GPU均可

环境安装:

pip install langchain_openai langchain langchain_experimental

模型下载:

使用modelscope-cli下载qwen2模型:


modelscope download --model=qwen/Qwen2-7B-Instruct-GGUF --local_dir . qwen2-7b-instruct-q5_k_m.gguf

运行Qwen2(本地文件,也可以直接用ollama hub)

复制模型路径,创建名为“ModelFile”的meta文件,内容如下:


from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain_openai import ChatOpenAI
import pandas as pd
# 下载csv文件
df = pd.read_csv(
    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
agent = create_pandas_dataframe_agent(
    ChatOpenAI(api_key='ollama', # ollama 不需要使用真实的API key
        base_url = 'http://127.0.0.1:11434/v1',
        model="myqwen2"),
    df,
    verbose=True,
    allow_dangerous_code=True
)
agent.invoke("how many rows are there?")

使用ollama create命令创建自定义模型并运行

ollama create myqwen2 --file ./ModelFile
ollama run myqwen2

运行如下function call 代码(代码解释器):

from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain_openai import ChatOpenAI
import pandas as pd
# 下载csv文件
df = pd.read_csv(
    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
agent = create_pandas_dataframe_agent(
    ChatOpenAI(api_key='ollama', # ollama 不需要使用真实的API key
        base_url = 'http://127.0.0.1:11434/v1',
        model="myqwen2"),
    df,
    verbose=True,
    allow_dangerous_code=True
)
agent.invoke("how many rows are there?")

Output

相关文章
|
5月前
|
人工智能 测试技术 API
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
PaperBench是OpenAI推出的开源评测框架,通过8316个评分节点系统评估AI智能体复现学术论文的能力,涵盖理论理解、代码实现到实验执行全流程。
278 30
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
|
5月前
|
人工智能 搜索推荐 开发者
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
OpenAI最新开源的BrowseComp基准包含1266个高难度网络检索问题,覆盖影视、科技、艺术等九大领域,其最新Deep Research模型以51.5%准确率展现复杂信息整合能力,为AI代理的浏览能力评估建立新标准。
264 4
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
|
6月前
|
机器学习/深度学习 人工智能 开发者
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
GPT-4o-mini-transcribe 是 OpenAI 推出的语音转文本模型,基于 GPT-4o-mini 架构,采用知识蒸馏技术,适合在资源受限的设备上运行,具有高效、实时和高性价比的特点。
266 2
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
|
6月前
|
人工智能 自然语言处理 语音技术
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
GPT-4o mini TTS 是 OpenAI 推出的轻量级文本转语音模型,支持多语言、多情感控制,适用于智能客服、教育学习、智能助手等多种场景。
276 2
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
|
5月前
|
人工智能 自然语言处理 测试技术
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
Codex CLI是OpenAI推出的轻量级AI编程智能体,基于自然语言指令帮助开发者高效生成代码、执行文件操作和进行版本控制,支持代码生成、重构、测试及数据库迁移等功能。
608 0
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
|
6月前
|
机器学习/深度学习 人工智能 API
GPT-4o-Transcribe:OpenAI 推出高性能语音转文本模型!错误率暴降90%+方言通杀,Whisper当场退役
GPT-4o-Transcribe 是 OpenAI 推出的高性能语音转文本模型,支持多语言和方言,适用于复杂场景如呼叫中心和会议记录,定价为每分钟 0.006 美元。
280 2
|
6月前
|
Web App开发 人工智能 JavaScript
Nanobrowser:开源版OpenAI Operator!AI自动操控浏览器,复杂网页任务一键搞定
Nanobrowser 是一款开源的 Chrome 扩展工具,基于多智能体系统实现复杂的网页任务自动化,支持多种大型语言模型,完全免费且注重隐私保护。
685 1
|
10月前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
1003 62
AI经营|多Agent择优生成商品标题
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
911 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
9月前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
386 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务