一键服务化:从魔搭开源模型到OpenAI API服务

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。

大模型在过去一年多时间里的一路技术狂奔,深刻的改变了今天模型和AI的整体应用生态,也给开发者提供纷繁复杂的模型选择。在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。许多开源工具和框架,包括LlamaIndex,LangChain等,都提供了与OpenAI API接口的标准对接方式,让开发者能方便地调用模型服务,进行各种工具以及应用的开发。无论是闭源模型还是开源模型,都能通过接口标准化,让广大开发者基于已有的丰富教程、示例代码和最佳实践指南,实现模型使用的真正落地。

对于AI应用开发,相比直接本地加载模型进行推理,模型的API服务化接口提供了更轻量化以及可扩展的潜力。开源模型从checkpoint转换为模型服务,并通过大家熟悉OpenAI API来提供服务,无疑时让模型能力能更好被集成的助推器。我们也希望ModelScope社区上开源的,多种多样的大模型,都能够被迅速服务化,并通过OpenAI API的接口开放给广大开发者,激发更多在模型应用上的创造力。这是我们在ModelScope推出一键部署OpenAI API兼容的模型服务的初衷。

SwingDeploy

SwingDeploy是魔搭社区推出的模型一键部署服务,支持将魔搭上的各种(包括语音,视频,NLP等不同领域)模型直接部署到用户指定的云资源上。并能在部署后通过ModelScope pipeline提供通用性的API调用。而有鉴于LLM领域,OpenAI API接口的便利性,以及大模型领域高效推理框架(包括Ollama+llama.cpp,vLLM,LMDeploy, SGLang等)的迅速发展,我们这一期针对LLM,专门提供了能够提供OpenAI API兼容的的模型服务部署能力。而在这许多大模型推理框架中,Ollama基于llama.cpp,提供了包括CPU在内的多硬件支持,也是这期SwingDeploy在这一能力上首选使用的推理框架。

Ollama推理框架

Ollama是基于开源的llama.cpp项目开发的模型推理工具框架。得益于llama.cpp提供的高效模型推理和多硬件适配,Ollama使得开发者能通过命令行,迅速在不同的硬件环境上拉起大模型服务。更重要的是,作为一个开源项目,Ollama保持了与llama.cpp对接的开放性:除了Ollama官方提供的大模型以外,开发者可以通过导入指定的GGUF模型文件,并通过Modelfile配置文件自定义模型推理参数。与此同时,Ollama提供了OpenAI API兼容的接口,为模型的使用提供了便利。

从模型到OpenAI API:上手实操

SwingDeploy提供了将ModelScope上的开源模型,部署到云上并提供OpenAI API接口的服务。

  • 前置工作:首先从魔搭站点的模型服务页面进入部署服务:https://www.modelscope.cn/my/modelService/deploy。如果之前没有用过SwingDeploy服务,需要先配置一下ModelScope账号和阿里云账号的绑定,并开通FC服务授权。

注:开通服务和授权均为免费,另外绑定阿里云账号的话,还可以在ModelScope Notebook上薅100个小时的GPU免费算力。

按照页面上的提示一步步操作即可。绑定授权都完成后长这样:

  • 一键部署:完成准备工作后,点击新建部署,就可以进入部署页面

在这里,我们可以看到,在“原生部署”链路之外,新增了“OpenAI API兼容部署”页面。当前首先支持了Ollama推理框架。在这个页面上,可以选择想要部署的模型。这里我们以Qwen2-7B-Instruct为例,点击一键部署即进入函数计算FC的部署页面,点击“创建应用”即开始部署。

取决于您具体选择的模型,模型部署大概需要几分钟到十几分钟的时间,耐心等待一下即可。

添加图片注释,不超过 140 字(可选)

部署完成后,就可以直接使用OpenAI API来调用Qwen2-7B这个模型了。从“立即使用”入口,就可以获取使用的范例代码:

需要注意的是,这个部署是您自己的专有部署,鉴权信息就是模型服务地址(base_url),不需要填入特殊的API Key。我们把范例代码拷贝并执行,就可以直接调用模型服务:

from openai import OpenAI
model_id = 'qwen/Qwen2-7B-Instruct-GGUF'
client = OpenAI(
    base_url='https://ms-fc-dapp-func-<replace with your  id>.cn-hangzhou.fcapp.run/v1',
    api_key='ollama'
)
response=client.chat.completions.create(
    model=model_id,
    messages=[{"role":"user", "content":"Hello! 你是谁?"}],
    stream=True
)
for chunk in response:
    print(chunk.choices[0].delta.content, end='')
你好!我是阿里云开发的一款超大规模语言模型,我叫通义千问。作为一个AI助手,我的目标是帮助用户获得准确、有用的信息,解决他们的问题和困惑。我可以回答各种问题、提供代码实现、辅助学习、解答疑惑等。请随时向我提问,我会尽力提供最好的帮助。

到这里,通过几个简单的步骤,我们就完成了一个Qwen2-7B的OpenAI接口兼容API服务的部署。现在通过OpenAI的SDK或者API,就能够接入到众多与OpenAI兼容的工具链或其他生态服务中了。

在上面部署的流程中,我们全程使用了默认配置,实际是在CPU机器上,部署了Qwen2的70亿参数规模模型的一个GGUF量化(Q5_K_M)版本。接下来我们再展开介绍一下这个链路上的可配置参数。

自定义部署硬件与模型API参数

除了默认的参数以外,SwingDeploy同时支持开发者对于部署模型所使用的参数进行配置。我们这里进一步展开一下做介绍。

展开“高级配置”,就可以看到可用的额外选项:

这里我们逐一说明一下:

-模型版本号:ModelScope上的模型可以有不同的版本,这里可做选择(默认使用最新的master版本)。

-模型文件:GGUF格式极大简化了大语言模型文件的管理,可通过单模型文件完成推理。而且借助llama.cpp提供的丰富量化能力,一个模型repo下的不同GGUF文件,通常对应的是不同量化精度与量化方法。平台默认选用的是Q5_K_M版本,在推理精度以及推理速度,资源消耗之间做一个较好的均衡。如果有特殊的需求,也可以选择更高的精度--例如FP16版本,或者更激进的量化(更小的模型文件)-- 例如Q2_K版本。

  • Modelfile配置:Modelfile是Ollama框架进行模型参数设定的配置文件,SwingDeploy为当前支持的模型都提供了默认可用的配置,但是也允许您自定义配置,点击页面上的“编辑”即可进行修改。

比如这里我们把模型部署使用的SYSTEM prompt修改为

You are a lovely cat, you answer each question ending with "meow~"(喵~)

这里我们选用了Gemma2模型,并通过SYSTEM prompt的配置让模型扮演一只小猫,每个回答都要以“meow~”(喵~)来做结尾。

模型部署后,再进行调用:


可以看到,这时候同样使用OpenAI API调用,模型确实展现出了符合预期的行为。当然,部分配置也可以在每次通过OpenAI的API/SDK接口调用的时候修改(例如temperature,top_p, top_k等参数)。

  • 部署类型:SwingDeploy x Ollama框架,支持在CPU或GPU上的部署,在这里可以按需进行选择。同时在FC的部署页面上,也可以选择更多的不同规格,这里不再赘述。


当前SwingDeploy提供基于阿里云函数计算(FC)的serverless服务,模型的部署可以根据API调用的时间来收费:整体的部署成本,尤其是CPU部署成本,相当可控。具体细节可以参见FC的产品页面说明。

What's Next

OpenAI API作为今天大模型应用生态的事实标准,已经在业界,包括各个开源社区,被广泛的接受。ModelScope社区的SwingDeploy,打通了从开源模型,直接转换为OpenAI API兼容的模型服务之间的通路。这为开发者通过API服务,迅速上手不同的开源模型,将模型能力接入不同的应用生态,提供了较大的便利性。后续我们会有更多的功能上线:

-扩大模型支持的范围。当前一期主要提供了包括qwen2,gemma2, llama3.1等一系列头部开源模型的直接部署能力。后续我们计划开放对所有的开源大模型支持,只要是GGUF格式的LLM模型,均可以通过SwingDeploy迅速部署位OpenAI API服务。 -添加不同模型API接口支持。目前SwingDeploy上的OpenAI API兼容首先提供了LLM模型支持(OpenAI的Chat Completions接口),后续会添加包括embedding,多模态VL模型,乃至语音等各种模型的支持,全面补全基于OpenAI API生态使用各种开源模型的生态。 -引入Ollama以外的其他推理框架(如vLLM、LMdeploy、SGLang等)的支持。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
12
10
0
156
分享
相关文章
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
GPT-4o-mini-transcribe 是 OpenAI 推出的语音转文本模型,基于 GPT-4o-mini 架构,采用知识蒸馏技术,适合在资源受限的设备上运行,具有高效、实时和高性价比的特点。
44 2
GPT-4o-mini-transcribe:OpenAI 推出实时语音秒转文本模型!高性价比每分钟0.003美元
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
GPT-4o mini TTS 是 OpenAI 推出的轻量级文本转语音模型,支持多语言、多情感控制,适用于智能客服、教育学习、智能助手等多种场景。
71 2
GPT-4o mini TTS:OpenAI 推出轻量级文本转语音模型!情感操控+白菜价冲击配音圈
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
本文介绍了如何利用阿里云技术快速部署和使用DeepSeek系列模型,涵盖满血版API调用和云端部署两种方案。DeepSeek在数学、代码和自然语言处理等复杂任务中表现出色,支持私有化部署和企业级加密,确保数据安全。通过详细的步骤和代码示例,帮助开发者轻松上手,提升工作效率和模型性能。解决方案链接:[阿里云DeepSeek方案](https://www.aliyun.com/solution/tech-solution/deepseek-r1-for-platforms?utm_content=g_1000401616)。
零门槛,即刻拥有DeepSeek-R1满血版——调用API及部署各尺寸模型
GPT-4o-Transcribe:OpenAI 推出高性能语音转文本模型!错误率暴降90%+方言通杀,Whisper当场退役
GPT-4o-Transcribe 是 OpenAI 推出的高性能语音转文本模型,支持多语言和方言,适用于复杂场景如呼叫中心和会议记录,定价为每分钟 0.006 美元。
50 2
【2025.3.08更新】Linkreate wordpressAI智能插件|自动生成SEO文章/图片/视频+长尾词优化 内置DeepSeek多模型支持与API扩展
Linkreate WordPress AI插件提供强大的自动化文章生成、SEO优化、关键词管理和内容采集功能。它能根据关键词自动生成高质量文章,支持多语言和批量生成,内置长尾关键词生成工具,并可定时自动发布文章。插件还集成了多种AI服务,支持前端AI客服窗口及媒体生成,帮助用户高效管理网站内容,提升SEO效果。
Linkreate wordpressAI智能插件|自动生成SEO文章/图片/视频+长尾词优化 内置DeepSeek多模型支持与API扩展
Linkreate WordPress AI插件提供强大的文章生成与优化功能,支持自动化生成高质量文章、批量生成、SEO优化及双标题定制。关键词生成管理方面,可批量生成长尾关键词并自定义参数。内容采集功能支持单篇和批量采集指定网站内容,可视化规则生成器方便使用。定时任务实现全自动文章生成,24小时稳定运行。API集成兼容多种AI服务,如DeepSeek、OpenAI等,并支持前端AI客服窗口。媒体生成功能包括自动为文章生成图片和短视频,提升内容丰富度。官网提供插件演示及下载:[https://idc.xymww.com/](https://idc.xymww.com/)
Nanobrowser:开源版OpenAI Operator!AI自动操控浏览器,复杂网页任务一键搞定
Nanobrowser 是一款开源的 Chrome 扩展工具,基于多智能体系统实现复杂的网页任务自动化,支持多种大型语言模型,完全免费且注重隐私保护。
175 1
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
又又又上新啦!魔搭免费模型推理API支持DeepSeek-R1,Qwen2.5-VL,Flux.1 dev及Lora等
114 7
大模型文生图服务API设计原来如此简单(1)
文生图大模型的API设计其实很简单!无论是Midjourney这样的商业产品,还是ComfyUI这样的开源工具,它们的核心API设计都遵循着相似的简单原则。
74 1
69.9K star!这个API调试神器让你告别Postman,开源免费真香!
Hoppscotch 是一款专为开发者打造的轻量级API调试工具,凭借其极简的界面设计和强大的功能支持,已成为GitHub上最受欢迎的API开发工具之一。无需安装客户端,打开浏览器即可享受媲美Postman的专业体验!

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等