一键服务化:从魔搭开源模型到OpenAI API服务

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。

大模型在过去一年多时间里的一路技术狂奔,深刻的改变了今天模型和AI的整体应用生态,也给开发者提供纷繁复杂的模型选择。在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。许多开源工具和框架,包括LlamaIndex,LangChain等,都提供了与OpenAI API接口的标准对接方式,让开发者能方便地调用模型服务,进行各种工具以及应用的开发。无论是闭源模型还是开源模型,都能通过接口标准化,让广大开发者基于已有的丰富教程、示例代码和最佳实践指南,实现模型使用的真正落地。

对于AI应用开发,相比直接本地加载模型进行推理,模型的API服务化接口提供了更轻量化以及可扩展的潜力。开源模型从checkpoint转换为模型服务,并通过大家熟悉OpenAI API来提供服务,无疑时让模型能力能更好被集成的助推器。我们也希望ModelScope社区上开源的,多种多样的大模型,都能够被迅速服务化,并通过OpenAI API的接口开放给广大开发者,激发更多在模型应用上的创造力。这是我们在ModelScope推出一键部署OpenAI API兼容的模型服务的初衷。

SwingDeploy

SwingDeploy是魔搭社区推出的模型一键部署服务,支持将魔搭上的各种(包括语音,视频,NLP等不同领域)模型直接部署到用户指定的云资源上。并能在部署后通过ModelScope pipeline提供通用性的API调用。而有鉴于LLM领域,OpenAI API接口的便利性,以及大模型领域高效推理框架(包括Ollama+llama.cpp,vLLM,LMDeploy, SGLang等)的迅速发展,我们这一期针对LLM,专门提供了能够提供OpenAI API兼容的的模型服务部署能力。而在这许多大模型推理框架中,Ollama基于llama.cpp,提供了包括CPU在内的多硬件支持,也是这期SwingDeploy在这一能力上首选使用的推理框架。

Ollama推理框架

Ollama是基于开源的llama.cpp项目开发的模型推理工具框架。得益于llama.cpp提供的高效模型推理和多硬件适配,Ollama使得开发者能通过命令行,迅速在不同的硬件环境上拉起大模型服务。更重要的是,作为一个开源项目,Ollama保持了与llama.cpp对接的开放性:除了Ollama官方提供的大模型以外,开发者可以通过导入指定的GGUF模型文件,并通过Modelfile配置文件自定义模型推理参数。与此同时,Ollama提供了OpenAI API兼容的接口,为模型的使用提供了便利。

从模型到OpenAI API:上手实操

SwingDeploy提供了将ModelScope上的开源模型,部署到云上并提供OpenAI API接口的服务。

  • 前置工作:首先从魔搭站点的模型服务页面进入部署服务:https://www.modelscope.cn/my/modelService/deploy。如果之前没有用过SwingDeploy服务,需要先配置一下ModelScope账号和阿里云账号的绑定,并开通FC服务授权。

注:开通服务和授权均为免费,另外绑定阿里云账号的话,还可以在ModelScope Notebook上薅100个小时的GPU免费算力。

按照页面上的提示一步步操作即可。绑定授权都完成后长这样:

  • 一键部署:完成准备工作后,点击新建部署,就可以进入部署页面

在这里,我们可以看到,在“原生部署”链路之外,新增了“OpenAI API兼容部署”页面。当前首先支持了Ollama推理框架。在这个页面上,可以选择想要部署的模型。这里我们以Qwen2-7B-Instruct为例,点击一键部署即进入函数计算FC的部署页面,点击“创建应用”即开始部署。

取决于您具体选择的模型,模型部署大概需要几分钟到十几分钟的时间,耐心等待一下即可。

添加图片注释,不超过 140 字(可选)

部署完成后,就可以直接使用OpenAI API来调用Qwen2-7B这个模型了。从“立即使用”入口,就可以获取使用的范例代码:

需要注意的是,这个部署是您自己的专有部署,鉴权信息就是模型服务地址(base_url),不需要填入特殊的API Key。我们把范例代码拷贝并执行,就可以直接调用模型服务:

from openai import OpenAI
model_id = 'qwen/Qwen2-7B-Instruct-GGUF'
client = OpenAI(
    base_url='https://ms-fc-dapp-func-<replace with your  id>.cn-hangzhou.fcapp.run/v1',
    api_key='ollama'
)
response=client.chat.completions.create(
    model=model_id,
    messages=[{"role":"user", "content":"Hello! 你是谁?"}],
    stream=True
)
for chunk in response:
    print(chunk.choices[0].delta.content, end='')
你好!我是阿里云开发的一款超大规模语言模型,我叫通义千问。作为一个AI助手,我的目标是帮助用户获得准确、有用的信息,解决他们的问题和困惑。我可以回答各种问题、提供代码实现、辅助学习、解答疑惑等。请随时向我提问,我会尽力提供最好的帮助。

到这里,通过几个简单的步骤,我们就完成了一个Qwen2-7B的OpenAI接口兼容API服务的部署。现在通过OpenAI的SDK或者API,就能够接入到众多与OpenAI兼容的工具链或其他生态服务中了。

在上面部署的流程中,我们全程使用了默认配置,实际是在CPU机器上,部署了Qwen2的70亿参数规模模型的一个GGUF量化(Q5_K_M)版本。接下来我们再展开介绍一下这个链路上的可配置参数。

自定义部署硬件与模型API参数

除了默认的参数以外,SwingDeploy同时支持开发者对于部署模型所使用的参数进行配置。我们这里进一步展开一下做介绍。

展开“高级配置”,就可以看到可用的额外选项:

这里我们逐一说明一下:

-模型版本号:ModelScope上的模型可以有不同的版本,这里可做选择(默认使用最新的master版本)。

-模型文件:GGUF格式极大简化了大语言模型文件的管理,可通过单模型文件完成推理。而且借助llama.cpp提供的丰富量化能力,一个模型repo下的不同GGUF文件,通常对应的是不同量化精度与量化方法。平台默认选用的是Q5_K_M版本,在推理精度以及推理速度,资源消耗之间做一个较好的均衡。如果有特殊的需求,也可以选择更高的精度--例如FP16版本,或者更激进的量化(更小的模型文件)-- 例如Q2_K版本。

  • Modelfile配置:Modelfile是Ollama框架进行模型参数设定的配置文件,SwingDeploy为当前支持的模型都提供了默认可用的配置,但是也允许您自定义配置,点击页面上的“编辑”即可进行修改。

比如这里我们把模型部署使用的SYSTEM prompt修改为

You are a lovely cat, you answer each question ending with "meow~"(喵~)

这里我们选用了Gemma2模型,并通过SYSTEM prompt的配置让模型扮演一只小猫,每个回答都要以“meow~”(喵~)来做结尾。

模型部署后,再进行调用:


可以看到,这时候同样使用OpenAI API调用,模型确实展现出了符合预期的行为。当然,部分配置也可以在每次通过OpenAI的API/SDK接口调用的时候修改(例如temperature,top_p, top_k等参数)。

  • 部署类型:SwingDeploy x Ollama框架,支持在CPU或GPU上的部署,在这里可以按需进行选择。同时在FC的部署页面上,也可以选择更多的不同规格,这里不再赘述。


当前SwingDeploy提供基于阿里云函数计算(FC)的serverless服务,模型的部署可以根据API调用的时间来收费:整体的部署成本,尤其是CPU部署成本,相当可控。具体细节可以参见FC的产品页面说明。

What's Next

OpenAI API作为今天大模型应用生态的事实标准,已经在业界,包括各个开源社区,被广泛的接受。ModelScope社区的SwingDeploy,打通了从开源模型,直接转换为OpenAI API兼容的模型服务之间的通路。这为开发者通过API服务,迅速上手不同的开源模型,将模型能力接入不同的应用生态,提供了较大的便利性。后续我们会有更多的功能上线:

-扩大模型支持的范围。当前一期主要提供了包括qwen2,gemma2, llama3.1等一系列头部开源模型的直接部署能力。后续我们计划开放对所有的开源大模型支持,只要是GGUF格式的LLM模型,均可以通过SwingDeploy迅速部署位OpenAI API服务。 -添加不同模型API接口支持。目前SwingDeploy上的OpenAI API兼容首先提供了LLM模型支持(OpenAI的Chat Completions接口),后续会添加包括embedding,多模态VL模型,乃至语音等各种模型的支持,全面补全基于OpenAI API生态使用各种开源模型的生态。 -引入Ollama以外的其他推理框架(如vLLM、LMdeploy、SGLang等)的支持。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
2月前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
204 2
|
14天前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
13天前
|
人工智能 API 语音技术
开发者福利,魔搭推出免费模型推理API,注册就送每日2000次调用!
今天,魔搭社区开放了免费的开源模型推理API,仅需使用魔搭的SDK Token,就可以通过简单的API请求探索各种强大的开源模型的使用。
|
17天前
|
人工智能 自然语言处理 计算机视觉
OpenAI发布sCM提升50倍效率,扩散模型重大技术突破!
OpenAI近期发布了Simplified Consistency Models (sCM) 技术,这是在扩散模型基础上的重大改进,实现了50倍效率提升。sCM通过简化和稳定连续时间一致性模型的训练过程,解决了传统模型中的离散化误差和训练不稳定性问题,显著提升了生成模型的性能和效率。在多个数据集上的测试结果表明,sCM不仅超越了现有模型,还在生成模型的实际应用中展现了巨大潜力。论文地址:https://arxiv.org/abs/2410.11081
37 3
|
27天前
|
人工智能 Java API
ChatClient:探索与AI模型通信的Fluent API
【11月更文挑战第22天】随着人工智能(AI)技术的飞速发展,越来越多的应用场景开始融入AI技术以提升用户体验和系统效率。在Java开发中,与AI模型通信成为了一个重要而常见的需求。为了满足这一需求,Spring AI引入了ChatClient,一个提供流畅API(Fluent API)的客户端,用于与各种AI模型进行通信。本文将深入探讨ChatClient的底层原理、业务场景、概念、功能点,并通过Java代码示例展示如何使用Fluent API与AI模型进行通信。
46 8
|
26天前
|
JSON 关系型数据库 测试技术
使用Python和Flask构建RESTful API服务
使用Python和Flask构建RESTful API服务
|
29天前
|
人工智能 计算机视觉 网络架构
OpenAI攻克扩散模型短板,清华校友路橙、宋飏合作最新论文
扩散模型在生成AI领域取得显著成果,但其训练不稳定性和采样速度慢限制了发展。OpenAI与清华校友合作,提出连续时间一致性模型(CMs),通过TrigFlow等创新解决了这些问题,大幅提升了训练稳定性和计算效率,实现了与最优模型相当的样本质量,同时减少了计算资源消耗。
39 2
|
28天前
|
SQL 机器学习/深度学习 人工智能
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!
本文介绍了四个最新的 AI 开源项目,涵盖多模态生成式 AI、自然语言到 SQL 转化、多模态数学推理和复杂逻辑推理等多个领域,为 AI 应用开发提供了丰富的资源和工具。
113 0
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!
|
1月前
|
监控 安全 API
拥抱开源:下一代API管理工具Kong的崛起
【10月更文挑战第27天】在微服务架构和API经济的推动下,API管理成为软件开发的关键环节。Kong作为开源的API管理平台,凭借其灵活性和强大功能,受到开发者的青睐。本文探讨了Kong的核心特性、使用技巧及其在企业中的应用,帮助读者更好地理解和利用这一工具。
|
28天前
|
Web App开发 人工智能 自然语言处理
WebChat:开源的网页内容增强问答 AI 助手,基于 Chrome 扩展的最佳实践开发,支持自定义 API 和本地大模型
WebChat 是一个基于 Chrome 扩展开发的 AI 助手,能够帮助用户理解和分析当前网页的内容,支持自定义 API 和本地大模型。
65 0