1 -> vector的介绍及使用
1.1 -> vector的介绍
vector的文档介绍
- vector是表示可变大小数组的序列容器;
- 像数组一样,vector也采用的连续存储空间来存储元素。也就意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理;
- 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器时,vector并不会每次都重新分配大小;
- vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的;
- 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长;
- 与其他动态序列容器相比(deque, list and forward_list),vector在访问元素时更加高效,在,末尾添加和删除元素相对高效。对于其他不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。
使用STL的三个境界:能用、明理、能扩展。
1.2 -> vector的使用
1.2.1 -> vector的介绍
构造函数声明 | 接口说明 |
vector() | 无参构造 |
vector(size_type n, const value_type& val = value_type()) | 构造并初始化n个val |
vector(const vector& x) | 拷贝构造 |
vector(Inputlterator first, Inputlterator last) | 使用迭代器进行初始化构造 |
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; int TestVector1() { vector<int> first; vector<int> second(4, 100); vector<int> third(second.begin(), second.end()); vector<int> fourth(third); int myints[] = { 16,2,77,29 }; vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int)); cout << "The contents of fifth are:"; for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it) cout << ' ' << *it; cout << endl; return 0; } int main() { TestVector1(); return 0; }
1.2.2 -> vector iterator的使用
iterator的使用 | 接口说明 |
begin + end | 获取第一个数据位置的iterator / const_iterator,获取最后一个数据的下一个位置的iterator / const_iterator |
rbegin + rend | 获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iteratorreverse_iterator |
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; void PrintVector(const vector<int>& v) { // const对象使用const迭代器进行遍历打印 vector<int>::const_iterator it = v.begin(); while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; } void TestVector2() { vector<int> v; v.push_back(1); v.push_back(2); v.push_back(3); v.push_back(4); // 使用迭代器进行遍历打印 vector<int>::iterator it = v.begin(); while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; // 使用迭代器进行修改 it = v.begin(); while (it != v.end()) { *it *= 2; ++it; } // 使用反向迭代器进行遍历再打印 // vector<int>::reverse_iterator rit = v.rbegin(); auto rit = v.rbegin(); while (rit != v.rend()) { cout << *rit << " "; ++rit; } cout << endl; PrintVector(v); } int main() { TestVector2(); return 0; }
1.2.3 -> vector空间增长问题
容量空间 | 接口说明 |
size | 获取数据个数 |
capacity | 获取容量大小 |
empty | 判断是否为空 |
resize | 改变vector的size |
reverse | 改变vector的capacity |
- capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。不要固化认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL;
- reverse只负责开辟空间,如果确定知道需要用多少空间,reverse可以缓解vector增容的代价缺陷问题;
- resize在开空间的同时还会进行初始化,影响size。
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; // 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充 // 注意:resize在增多元素个数时可能会扩容 void TestVector3() { vector<int> v; for (int i = 1; i < 10; i++) v.push_back(i); v.resize(5); v.resize(8, 100); v.resize(12); cout << "v contains:"; for (size_t i = 0; i < v.size(); i++) cout << ' ' << v[i]; cout << endl; } // 测试vector的默认扩容机制 // vs:按照1.5倍方式扩容 // linux:按照2倍方式扩容 void TestVectorExpand() { size_t sz; vector<int> v; sz = v.capacity(); cout << "making v grow:" << endl; for (int i = 0; i < 100; ++i) { v.push_back(i); if (sz != v.capacity()) { sz = v.capacity(); cout << "capacity changed: " << sz << endl; } } } // 往vecotr中插入元素时,如果大概已经知道要存放多少个元素 // 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低 void TestVectorExpandOP() { vector<int> v; size_t sz = v.capacity(); // 提前将容量设置好,可以避免一遍插入一遍扩容 v.reserve(100); cout << "making bar grow:" << endl; for (int i = 0; i < 100; ++i) { v.push_back(i); if (sz != v.capacity()) { sz = v.capacity(); cout << "capacity changed: " << sz << endl; } } } int main() { TestVector3(); TestVectorExpand(); TestVectorExpandOP(); return 0; }
1.2.4 -> vector的增删查改
vector增删查改 | 接口说明 |
push_back | 尾插 |
pop_back | 尾删 |
find | 查找 |
insert | 在position之前插入val |
erase | 删除position位置的数据 |
swap | 交换两个vector的数据空间 |
operator[] | 像数组一样访问 |
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; void TestVector4() { vector<int> v; v.push_back(1); v.push_back(2); v.push_back(3); v.push_back(4); auto it = v.begin(); while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; v.pop_back(); v.pop_back(); it = v.begin(); while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; } // 任意位置插入:insert和erase,以及查找find // 注意find不是vector自身提供的方法,是STL提供的算法 void TestVector5() { // 使用列表方式初始化,C++11新语法 vector<int> v{ 1, 2, 3, 4 }; // 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入 // 1. 先使用find查找3所在位置 // 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find auto pos = find(v.begin(), v.end(), 3); if (pos != v.end()) { // 2. 在pos位置之前插入30 v.insert(pos, 30); } vector<int>::iterator it = v.begin(); while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; pos = find(v.begin(), v.end(), 3); // 删除pos位置的数据 v.erase(pos); it = v.begin(); while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; } // operator[]+index 和 C++11中vector的新式for+auto的遍历 // vector使用这两种遍历方式是比较便捷的。 void TestVector6() { vector<int> v{ 1, 2, 3, 4 }; // 通过[]读写第0个位置。 v[0] = 10; cout << v[0] << endl; // 1. 使用for+[]小标方式遍历 for (size_t i = 0; i < v.size(); ++i) cout << v[i] << " "; cout << endl; vector<int> swapv; swapv.swap(v); cout << "v data:"; for (size_t i = 0; i < v.size(); ++i) cout << v[i] << " "; cout << endl; // 2. 使用迭代器遍历 cout << "swapv data:"; auto it = swapv.begin(); while (it != swapv.end()) { cout << *it << " "; ++it; } // 3. 使用范围for遍历 for (auto x : v) cout << x << " "; cout << endl; } int main() { TestVector4(); TestVector5(); TestVector6(); return 0; }
1.2.5 -> vector迭代器失效问题
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T*。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
对于vector可能会导致其迭代器失效的操作有:
1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reverse、insert、assign、push_back等。
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; int main() { vector<int> v{ 1,2,3,4,5,6 }; auto it = v.begin(); // 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容 // v.resize(100, 8); // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变 // v.reserve(100); // 插入元素期间,可能会引起扩容,而导致原空间被释放 // v.insert(v.begin(), 0); // v.push_back(8); // 给vector重新赋值,可能会引起底层容量改变 v.assign(100, 8); /* 出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉, 而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的 空间,而引起代码运行时崩溃。 解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新 赋值即可。 */ while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; return 0; }
2. 指定位置元素的删除 -> erase
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; int main() { int a[] = { 1, 2, 3, 4 }; vector<int> v(a, a + sizeof(a) / sizeof(int)); // 使用find查找3所在位置的iterator vector<int>::iterator pos = find(v.begin(), v.end(), 3); // 删除pos位置的数据,导致pos迭代器失效。 v.erase(pos); cout << *pos << endl; // 此处会导致非法访问 return 0; }
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上迭代器不会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
3. 注意:Linux下,g++编译器对迭代器失效的检测不是非常严格,处理也没有vs下极端。
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; // 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了 int main() { vector<int> v{ 1,2,3,4,5 }; for (size_t i = 0; i < v.size(); ++i) cout << v[i] << " "; cout << endl; auto it = v.begin(); cout << "扩容之前,vector的容量为: " << v.capacity() << endl; // 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100); cout << "扩容之后,vector的容量为: " << v.capacity() << endl; // 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会 // 虽然可能运行,但是输出的结果是不对的 while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; return 0; }
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; // 2. erase删除任意位置代码后,linux下迭代器并没有失效 // 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的 int main() { vector<int> v{ 1,2,3,4,5 }; vector<int>::iterator it = find(v.begin(), v.end(), 3); v.erase(it); cout << *it << endl; while (it != v.end()) { cout << *it << " "; ++it; } cout << endl; return 0; }
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <vector> using namespace std; // 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end // 此时迭代器是无效的,++it导致程序崩溃 int main() { vector<int> v{ 1,2,3,4,5 }; auto it = v.begin(); while (it != v.end()) { if (*it % 2 == 0) v.erase(it); ++it; } for (auto e : v) cout << e << " "; cout << endl; return 0; }
从上述三个例子可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃。
4. 与vector类似,string在插入+扩容操作+erase后,迭代器也会失效
#define _CRT_SECURE_NO_WARNINGS #include <iostream> using namespace std; void TestString() { string s("hello"); auto it = s.begin(); // 放开之后代码会崩溃,因为resize到20会string会进行扩容 // 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了 // 后序打印时,再访问it指向的空间程序就会崩溃 //s.resize(20, '!'); while (it != s.end()) { cout << *it; ++it; } cout << endl; it = s.begin(); while (it != s.end()) { it = s.erase(it); // 按照下面方式写,运行时程序会崩溃,因为erase(it)之后 // it位置的迭代器就失效了 // s.erase(it); ++it; } } int main() { TestString(); return 0; }
迭代器失效的解决方法:在使用前,对迭代器重新赋值即可。
2 -> vector的深度剖析及模拟实现
2.1 -> vector的模拟实现
#define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <assert.h> using namespace std; namespace fyd { template<class T> class vector { public: // Vector的迭代器是一个原生指针 typedef T* iterator; typedef const T* const_iterator; /// // 构造和销毁 vector() : _start(nullptr) , _finish(nullptr) , _endOfStorage(nullptr) {} vector(size_t n, const T& value = T()) : _start(nullptr) , _finish(nullptr) , _endOfStorage(nullptr) { reserve(n); while (n--) { push_back(value); } } /* * 理论上将,提供了vector(size_t n, const T& value = T())之后 * vector(int n, const T& value = T())就不需要提供了,但是对于: * vector<int> v(10, 5); * 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型 * 就不会走vector(size_t n, const T& value = T())这个构造方法, * 最终选择的是:vector(InputIterator first, InputIterator last) * 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int * 但是10和5根本不是一个区间,编译时就报错了 * 故需要增加该构造方法 */ vector(int n, const T& value = T()) : _start(new T[n]) , _finish(_start + n) , _endOfStorage(_finish) { for (int i = 0; i < n; ++i) { _start[i] = value; } } // 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器 // 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器 template<class InputIterator> vector(InputIterator first, InputIterator last) { while (first != last) { push_back(*first); ++first; } } vector(const vector<T>& v) : _start(nullptr) , _finish(nullptr) , _endOfStorage(nullptr) { reserve(v.capacity()); iterator it = begin(); const_iterator vit = v.cbegin(); while (vit != v.cend()) { *it++ = *vit++; } _finish = it; } vector<T>& operator=(vector<T> v) { swap(v); return *this; } ~vector() { if (_start) { delete[] _start; _start = _finish = _endOfStorage = nullptr; } } / // 迭代器相关 iterator begin() { return _start; } iterator end() { return _finish; } const_iterator cbegin() const { return _start; } const_iterator cend() const { return _finish; } // // 容量相关 size_t size() const { return _finish - _start; } size_t capacity() const { return _endOfStorage - _start; } bool empty() const { return _start == _finish; } void reserve(size_t n) { if (n > capacity()) { size_t oldSize = size(); // 1. 开辟新空间 T* tmp = new T[n]; if (_start) { for (size_t i = 0; i < oldSize; ++i) tmp[i] = _start[i]; // 3. 释放旧空间 delete[] _start; } _start = tmp; _finish = _start + oldSize; _endOfStorage = _start + n; } } void resize(size_t n, const T& value = T()) { // 1.如果n小于当前的size,则数据个数缩小到n if (n <= size()) { _finish = _start + n; return; } // 2.空间不够则增容 if (n > capacity()) reserve(n); // 3.将size扩大到n iterator it = _finish; _finish = _start + n; while (it != _finish) { *it = value; ++it; } } /// // 元素访问 T& operator[](size_t pos) { assert(pos < size()); return _start[pos]; } const T& operator[](size_t pos)const { assert(pos < size()); return _start[pos]; } T& front() { return *_start; } const T& front()const { return *_start; } T& back() { return *(_finish - 1); } const T& back()const { return *(_finish - 1); } / // vector的修改操作 void push_back(const T& x) { insert(end(), x); } void pop_back() { erase(end() - 1); } void swap(vector<T>& v) { std::swap(_start, v._start); std::swap(_finish, v._finish); std::swap(_endOfStorage, v._endOfStorage); } iterator insert(iterator pos, const T& x) { assert(pos <= _finish); // 空间不够先进行增容 if (_finish == _endOfStorage) { //size_t size = size(); size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2; reserve(newCapacity); // 如果发生了增容,需要重置pos pos = _start + size(); } iterator end = _finish - 1; while (end >= pos) { *(end + 1) = *end; --end; } *pos = x; ++_finish; return pos; } // 返回删除数据的下一个数据 // 方便解决:一边遍历一边删除的迭代器失效问题 iterator erase(iterator pos) { // 挪动数据进行删除 iterator begin = pos + 1; while (begin != _finish) { *(begin - 1) = *begin; ++begin; } --_finish; return pos; } private: iterator _start; // 指向数据块的开始 iterator _finish; // 指向有效数据的尾 iterator _endOfStorage; // 指向存储容量的尾 }; } /// / /// 测试 void TestVector1() { fyd::vector<int> v1; fyd::vector<int> v2(10, 5); int array[] = { 1,2,3,4,5 }; fyd::vector<int> v3(array, array + sizeof(array) / sizeof(array[0])); fyd::vector<int> v4(v3); for (size_t i = 0; i < v2.size(); ++i) { cout << v2[i] << " "; } cout << endl; auto it = v3.begin(); while (it != v3.end()) { cout << *it << " "; ++it; } cout << endl; for (auto e : v4) { cout << e << " "; } cout << endl; } void TestVector2() { fyd::vector<int> v; v.push_back(1); v.push_back(2); v.push_back(3); v.push_back(4); v.push_back(5); cout << v.size() << endl; cout << v.capacity() << endl; cout << v.front() << endl; cout << v.back() << endl; cout << v[0] << endl; for (auto e : v) { cout << e << " "; } cout << endl; v.pop_back(); v.pop_back(); for (auto e : v) { cout << e << " "; } cout << endl; v.insert(v.begin(), 0); for (auto e : v) { cout << e << " "; } cout << endl; v.erase(v.begin() + 1); for (auto e : v) { cout << e << " "; } cout << endl; } int main() { TestVector1(); TestVector2(); return 0; }
2.2 -> 使用memcpy拷贝问题
在vector模拟实现的reverse接口中,若使用memcpy进行拷贝,以下代码会发生什么问题?
int main() { fyd::vector<std::string> v; v.push_back("1111"); v.push_back("2222"); v.push_back("3333"); return 0; }
分析:
- memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中;
- 如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。
2.3 -> 动态二维数组理解
// 以杨辉三角的前n行为例:假设n为5 void TestVector3(size_t n) { // 使用vector定义二维数组vv,vv中的每个元素都是vector<int> fyd::vector<fyd::vector<int>> vv(n); // 将二维数组每一行中的vecotr<int>中的元素全部设置为1 for (size_t i = 0; i < n; ++i) vv[i].resize(i + 1, 1); // 给杨辉三角出第一列和对角线的所有元素赋值 for (int i = 2; i < n; ++i) { for (int j = 1; j < i; ++j) { vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1]; } } }
fyd::vector<fyd::vector<int>> vv(n);构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素。
填充完成后:
使用标准库中vector构建动态二维数组时与上图一致。
感谢大佬们的支持!!!
互三啦!!!