【海贼王编程冒险 - C语言海上篇】自定义类型:结构体,枚举,联合怎样定义?如何使用?

简介: 【海贼王编程冒险 - C语言海上篇】自定义类型:结构体,枚举,联合怎样定义?如何使用?

1 -> 结构体的声明

1.1 -> 结构的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.2 -> 结构的声明

例如描述一个学生:

struct Student
{
    char name[20]; //姓名
    int age; //年龄
    char id[20]; //学号
};

1.3 -> 特殊的声明

在声明结构时可以不完全声明

struct
{
    char name[20]; //姓名
    int age; //年龄
    char id[20]; //学号
}x;

1.4 -> 结构的自引用

typedef struct Node
{
    int data;
    struct Node* next;
}node;

1.5 -> 结构体变量的定义与初始化

struct Point
{
    int x;
    int y;
}p1; // 声明类型的同时定义变量p1
 
struct Point p2; // 定义结构体变量p2
 
// 初始化:定义变量的同时赋初值。
struct Point p3 = { 1, 2 };
 
struct Student  // 类型声明
{
    char name[20];  // 姓名
    int age;   // 年龄
};
 
struct Student stu = { "zzl", 21 }; // 初始化
 
struct Node
{
    int data;
    struct Point p;
    struct Node* next;
}n1 = { 1, {2,3}, NULL }; // 结构体嵌套初始化
 
struct Node n2 = { 2, {4, 5}, NULL }; // 结构体嵌套初始化

1.6 -> 结构体内存对齐

结构体的对齐规则:

->   第一个成员在与结构体变量偏移量为0的地址处。

->    其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。

对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 (VS中默认的值为8)

->    结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。

->    如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

存在内存对齐的原因:

->    平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;

某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

->    性能原因:

数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

总的来说:

结构体的内存对齐是用空间换时间的做法。

设计结构体时,怎样满足内存对齐又节省空间?

让占用空间小的成员尽量集中在一起

struct Point
{
    char x;
    int y;
    char z;
}p1;
 
struct Point
{
    char x;
    char z;
    int y;
}p2;

很显然,p1与p2类型虽然成员相同,但是占有的空间则是不同的。

1.7 -> 修改默认对齐数

#define _CRT_SECURE_NO_WARNINGS 1
 
#include <stdio.h>
 
#pragma pack(8) // 设置默认对齐数为8
struct Point1
{
    char x;
    int y;
    char z;
}p1;
#pragma pack() // 取消设置的默认对齐数,还原为默认对齐数
 
#pragma pack(2) // 设置默认对齐数为2
struct Point2
{
    char x;
    int y;
    char z;
}p2;
#pragma pack() // 取消设置的默认对齐数,还原为默认对齐数
 
int main()
{
 
    printf("p1占用空间字节数为: %d\n", sizeof(p1));
    printf("p2占用空间字节数为: %d\n", sizeof(p2));
 
    return 0;
}

运行结果:

1.8 -> 结构体传参

#define _CRT_SECURE_NO_WARNINGS 1
 
#include <stdio.h>
 
struct S
{
  int data[50];
  int num;
};
struct S s = { {1,2,3,4}, 21 };
 
// 结构体传参
void Print1(struct S s)
{
  printf("%d\n", s.num);
}
 
// 结构体地址传参
void Print2(struct S* ps)
{
  printf("%d\n", ps->num);
}
int main()
{
 
  Print1(s);  // 传结构体
  Print2(&s); // 传地址
 
  return 0;
}

很显然,Print2函数更好。


因为:

->  函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

->  如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降

结论:

结构体传参时,要传结构体的地址。

2 -> 位段

2.1 -> 什么是位段

位段的声明与结构相似,但是有两个不同:

->  位段的成员必须是 int、unsigned int 或signed int 。

->  位段的成员名后边有一个冒号和一个数字。

例如:

struct S
{
  int _a : 3;
  int _b : 5;
  int _c : 7;
};

2.2 -> 位段的内存分配

  1. 位段的成员可以是 int, unsigned int, signed int 或者是 char (属于整形家族)类型。
  2. 位段的空间上按照需要以4个字节(int)或者1个字节(char)的方式开辟的。
  3. 位段涉及诸多不确定因素,位段是不跨平台的,注重可移植的程序应避免使用位段。

如:

#define _CRT_SECURE_NO_WARNINGS 1
 
#include <stdio.h>
 
struct S
{
  int _a : 3;
  int _b : 5;
  int _c : 7;
};
 
int main()
{
 
  struct S s = { 0 };
  s._a = 1;
  s._b = 2;
  s._c = 3;
 
  return 0;
}

2.3 -> 位段的跨平台问题

->  int 位段被当成有符号数还是无符号数是不确定的。

->  位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32),写成27,在16位机器会出问题。

->  位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

->  当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:

跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是存在跨平台问题。

2.4 -> 位段的应用

3 -> 枚举

3.1 -> 枚举类型的定义

enum Day//星期
{
  Mon,
  Tues,
  Wed,
  Thur,
  Fri,
  Sat,
  Sun
};

定义的enum Day为枚举类型

{}内的内容是枚举类型的可能取值,称作枚举常量。

3.2 -> 枚举的优点

优点:

  1. 增加代码的可读性与可维护性。
  2. 与#define定义的标识符相比,枚举有类型检查,更加的严谨。
  3. 防止命名污染(封装)。
  4. 便于调试。
  5. 使用方便,一次可以定义多个变量。

3.3 -> 枚举的使用

#define _CRT_SECURE_NO_WARNINGS 1
 
#include <stdio.h>
 
enum Day//星期
{
  Mon = 1,
  Tues = 2,
  Wed = 3,
  Thur = 4,
  Fri = 5,
  Sat = 6,
  Sun = 7
};
 
int main()
{
 
  enum Day day = Sat;
  
  return 0;
}

4 -> 联合(共用体)

4.1 -> 联合类型的定义

联合是一种特殊的自定义类型。

这种类型定义的变量也包含一系列的成员,特征是这些成员共用同一块空间(所以联合也叫做共用体)。

// 联合类型的声明
union Un
{
  int a;
  char b;
};
 
union Un u; // 联合类型的定义

4.2 -> 联合的特点

联合的成员是共用同一内存空间,这样一个联合变量的大小,至少是最大成员的大小(因为联合体至少得有能力保存最大的成员)。

#define _CRT_SECURE_NO_WARNINGS 1
 
#include <stdio.h>
 
// 联合类型的声明
union Un
{
  int a;
  char b;
};
 
union Un u; // 联合类型的定义
 
int main()
{
 
  printf("%d\n", &(u.a));
  printf("%d\n", &(u.b));
  
  return 0;
}

4.3 -> 联合大小的计算

  1. 联合的大小至少是最大成员的大小。
  2. 当最大成员大小不是最大对齐数的整数倍时,就要对齐到最大对齐数的整数倍。
#define _CRT_SECURE_NO_WARNINGS 1
 
#include <stdio.h>
 
union Un1
{
  int a;
  char b[10];
};
 
union Un2
{
  int a;
  short b[20];
};
 
int main()
{
 
  printf("%d\n", sizeof(union Un1));
  printf("%d\n", sizeof(union Un2));
  
  return 0;
}

运行结果:


感谢各位大佬支持!!!

目录
相关文章
|
22天前
|
存储 C语言
如何在 C 语言中实现结构体的深拷贝
在C语言中实现结构体的深拷贝,需要手动分配内存并逐个复制成员变量,确保新结构体与原结构体完全独立,避免浅拷贝导致的数据共享问题。具体方法包括使用 `malloc` 分配内存和 `memcpy` 或手动赋值。
30 10
|
21天前
|
安全 编译器 Linux
【c语言】轻松拿捏自定义类型
本文介绍了C语言中的三种自定义类型:结构体、联合体和枚举类型。结构体可以包含多个不同类型的成员,支持自引用和内存对齐。联合体的所有成员共享同一块内存,适用于判断机器的大小端。枚举类型用于列举固定值,增加代码的可读性和安全性。文中详细讲解了每种类型的声明、特点和使用方法,并提供了示例代码。
19 3
|
21天前
|
存储 大数据 编译器
C语言:结构体对齐规则
C语言中,结构体对齐规则是指编译器为了提高数据访问效率,会根据成员变量的类型对结构体中的成员进行内存对齐。通常遵循编译器默认的对齐方式或使用特定的对齐指令来优化结构体布局,以减少内存浪费并提升性能。
|
26天前
|
编译器 C语言
共用体和结构体在 C 语言中的优先级是怎样的
在C语言中,共用体(union)和结构体(struct)的优先级相同,它们都是用户自定义的数据类型,用于组合不同类型的数据。但是,共用体中的所有成员共享同一段内存,而结构体中的成员各自占用独立的内存空间。
|
26天前
|
存储 C语言
C语言:结构体与共用体的区别
C语言中,结构体(struct)和共用体(union)都用于组合不同类型的数据,但使用方式不同。结构体为每个成员分配独立的内存空间,而共用体的所有成员共享同一段内存,节省空间但需谨慎使用。
|
30天前
|
存储 编译器 C语言
C语言函数的定义与函数的声明的区别
C语言中,函数的定义包含函数的实现,即具体执行的代码块;而函数的声明仅描述函数的名称、返回类型和参数列表,用于告知编译器函数的存在,但不包含实现细节。声明通常放在头文件中,定义则在源文件中。
|
30天前
|
编译器 C语言 C++
C语言结构体
C语言结构体
25 5
|
存储 C语言
【C语言】 条件操作符 -- 逗号表达式 -- []下标访问操作符,()函数调用操作符 -- 常见关键字 -- 指针 -- 结构体
【C语言】 条件操作符 -- 逗号表达式 -- []下标访问操作符,()函数调用操作符 -- 常见关键字 -- 指针 -- 结构体
【C语言】——define和指针与结构体初识
【C语言】——define和指针与结构体初识
|
存储 C语言
C语言初识-关键字-操作符-指针-结构体
C语言初识-关键字-操作符-指针-结构体
63 0