【数据结构和算法】--- 二叉树(3)--二叉树链式结构的实现(1)

简介: 【数据结构和算法】--- 二叉树(3)--二叉树链式结构的实现(1)

一、二叉树的创建(伪)

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,且为了方便后面的介绍,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

基于二叉树的链式结构,于是可以先malloc动态开辟出二叉树的每个节点并初始化,然后通过节点中的指针struct BinaryTreeNode* left(指向左树)和struct BinaryTreeNode* right(指向右树),将各个节点连接起来,最后大致模拟出了一棵二叉树,代码如下:

typedef int BTDataType;
typedef struct BinaryTreeNode
{
    BTDataType data;
    struct BinaryTreeNode* left;  //左树
    struct BinaryTreeNode* right; //右树
}BTNode;
BTNode* CreatBinaryTree()
{
    //动态开辟节点
    BTNode* node1 = BuyNode(1);
    BTNode* node2 = BuyNode(2);
    BTNode* node3 = BuyNode(3);
  BTNode* node4 = BuyNode(4);
  BTNode* node5 = BuyNode(5);
  BTNode* node6 = BuyNode(6);
    //链接节点
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  node4->left = node5;
  node4->right = node6;
  return node1;
}

在实现二叉树基本操作前,再回顾下二叉树的概念,一棵二叉树是结点的一个有限集合,该集合:

  • 或者为空
  • 由一个根节点加上两棵分别称为左子树和右子树的二叉树组成

二叉树满足的条件:

  • 二叉树不存在度大于2的结点
  • 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。

其余二叉树的概念还请回顾:【数据结构和算法】—二叉树(1)–树概念及结构


从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。


注意: 上述代码并不是创建二叉树的方式,真正创建二叉树方式将在后面介绍。


二、二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。 访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。下图可以理解为是二叉树的前序遍历:

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。 NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。


2.1 前序遍历

前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。 依据此规律我们便可如下遍历二叉树,为了方便观察,每次遍历到根节点都输出一下:

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
  if (root == NULL)
  {
    putchar('N');
    return;
  }
  putchar(root->val);  //访问根节点
  BinaryTreePrevOrder(root->left);  //访问左子树
  BinaryTreePrevOrder(root->right);  //访问右子树
}


前序遍历代码,逻辑结构大致如下图,可以参考一下:

在这利用递归思想来解决前序遍历的问题,因为是前序遍历(访问顺序依次是根节点,左子树,右子树),所以在进入下层递归前可以先输出根节点。当进入左/右子树时,会更新根节点(原为上层根节点的左/右孩子节点) 。二叉树的叶子节点的左右孩子都为NULL,那么便可将递归的结束条件定为NULL。这便是前序遍历的递归逻辑。

2.2 中序遍历

中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。 与前序遍历相似,只是访问顺序不同(依次是左子树,根节点,右子树),那么调整一下代码顺序即可,将输出根节点值的操作(putchar(root->val);),放在访问左子树之后。那么递归每次都会先进入左子树,且最先打印的为叶子节点。代码如下:

// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
  if (root == NULL)
  {
    putchar('N');
    return;
  }
  BinaryTreeInOrder(root->left);  //访问左子树
  putchar(root->val);  //输出根节点
  BinaryTreeInOrder(root->right);  //访问右子树
}

2.3 后序遍历

后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。 同样与前序遍历相似,访问顺序不同(依次是左子树,右子树,根节点),依此特性所以我们只需将输出操作(putchar(root->val))放到最后,其余代码不变。实现思想-递归完左子树和右子树后再输出根节点。 代码如下:

// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{

  if (root == NULL)
  {
    putchar('N');
    return;
  }
  BinaryTreePostOrder(root->left);  //访问左子树
  BinaryTreePostOrder(root->right);  //访问右子树
  putchar(root->val);  //输出根节点
}

三种遍历最后输出的结果(图中N表示递归时遇到了NULL):

  • 前序遍历结果:1 2 3 4 5 6
  • 中序遍历结果:3 2 1 5 4 6
  • 后序遍历结果:3 2 5 6 4 1


  1. 设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为 ( D )。
    A adbce
    B decab
    C debac
    D abcde
  2. 解: 解题思想(给定两种遍历序列,求出另外一种):我们可以根据各种遍历方法的特性来求解。( 1 ) 根据后续遍历序列找出根节点,因为后续遍历最后才会输出根,那么在序列的最后一个即为根节点a;( 2 ) 接着在中序遍历序列中找出根节点,然后划分左子树和右子树;( 3 ) 然后再到后序遍历序列中去除左子树和根节点,那么得到的便是右子树,并将其看为独立的树;( 4 ) 重复上述三步操作,直到排出完整的树。

图解如下:

解决此类问题最重要的还是要弄懂代码的递归思想。

三、二叉树节点个数及高度

3.1 二叉树节点个数

求二叉树的节点个数,利用的还是递归思想。我们可以将问题转化为----根节点(1),左子树的节点个数(root->left)和右子树的节点个数(root->right)的总结点个数。我们可以将根节点为空(root == NULL)作为递归结束的条件,并返回0(return 0)。 这种方法通常被称为递归分治。

// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{
  if (root == NULL)
    return 0;
  return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

代码图解:

3.2 二叉树叶子节点个数

叶子节点概念:含有的子树个数为0的节点。 如本次创建的二叉树的节点3,节点5,节点6。

基于叶子节点的特性,同样可以利用递归分治的方法,将问题同化为----左子树的叶子节点个数和右子树的叶子节点个数之和


函数返回的条件:

  • 当前节点(root)的左子树(root->left)和右子树(root->right)都为空时(即!(root->left && root->right)),那么此节点为叶子节点,并返回1
  • 当前节点为空节点(即(root == NULL)),返回0
  • 函数执行到最后,返回当前树的叶子节点数。
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
  if (root == NULL)
    return 0;
  if (!(root->left && root->right))
    return 1;
  return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

代码图解:

3.3二叉树第k层节点个数

既然是求第k层的节点个数,那我们便可以定义一个变量k,记录当前函数所要递归的层数。既然k的值是变化的,那么可以将他作为函数的参数,每递归一层便让他减一k - 1,那么k的值到1时,便是我们所要求的二叉树的第k层。

依据上述关系,便可以得出 函数返回的条件:

  • 遇到空节点时(root == NULL),返回0
  • k == 1时(说明到了二叉树的第k层),且当前节点不为空(root != NULL),那么便可返回1
  • 函数执行到了最后,返回统计到的符合条件的节点个数。
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
  if (root == NULL)
    return 0;
  if (k == 1 && root != NULL)
    return 1;
  return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

根据函数返回条件不难发现,k == 1时递归便不会继续往下层执行,这是因为此时函数必定会满足两个if条件中的一个,这也避免了递归到二叉树的第k + 1层。

代码图解:

3.4 二叉树查找值为x的节点

查找值为x的节点,可以将递归分治为----判断当前节点,判断左子树,判断右子树。 那么当遇到空节点(root == NULL)就返回return NULL;如果遇到所要查找的值(root->val == x)就返回当前地址(return root);那么如果都不满足就继续搜寻左子树,然后右子树;直到最后搜寻完整棵二叉树,都没有找到x,那么便返回NULL。

还需要注意的一个问题是,如果在递归过程中找到了目标值x,返回了当前地址root,但是现在只是回到了上一层递归的地方,返回值并不会被接收,而是继续执行下一个逻辑。 那么我们便可以用BTNode* ret1来接受函数的返回值,并判断,当返回值(ret1)不为NULL时(即说明上一次递归时,找到了x)直接返回此值return ret1

// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
    //空节点
  if (root == NULL)
    return NULL;
  //值为x的节点
  if (root->val == x)
    return root;
  //左子树递归,ret接收返回值,并判断
  BTNode* ret1 = BinaryTreeFind(root->left, x);
  if (ret1 != NULL)
    return ret1;
  //方法一:易于理解
  //BTNode* ret2 = BinaryTreeFind(root->right, x);
  //if (ret2 != NULL)
  //  return ret2;
  return BinaryTreeFind(root->right, x);
  return NULL;
}

代码图解:

四、二叉树的创建(真)

通过上面对各种遍历方法和递归思想的讲解,相信使用递归来真正创建二叉树也不难了,如下:

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int* pi)
{
    //判断是否为空,即当a[*pi] == '#'时
  if (a[*pi] == '#')
  {
    (*pi)++;
    return NULL;
  }
  //动态开辟节点
  BTNode* node = (BTNode*)malloc(sizeof(BTNode));
  if (node == NULL)
  {
    perror("malloc()::fail");
    exit(-1);
  }//赋值并连接(递归)
  node->val = a[*pi];
  (*pi)++;
  node->left = BinaryTreeCreate(a, pi);
  node->right = BinaryTreeCreate(a, pi);
  retur

上面介绍的二叉树的一些函数的执行结果如下:

另外还有一些较为复杂的函数将在下一篇文章中介绍。

目录
相关文章
|
3月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
71 1
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
82 0
|
7月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
189 10
 算法系列之数据结构-二叉树
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
157 3
 算法系列之数据结构-Huffman树
|
7月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
196 22
|
8月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
200 30
|
8月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
313 25
|
7天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
9天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
|
10天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
82 11

热门文章

最新文章