Python处理csv步骤详解

简介: Python处理csv步骤详解

CSV(Comma-Separated Values)即逗号分隔值,可以用Excel打开查看。由于是纯文本,任何编辑器也都可打开。与Excel文件不同,CSV文件中:

值没有类型,所有值都是字符串
不能指定字体颜色等样式
不能指定单元格的宽高,不能合并单元格
没有多个工作表
不能嵌入图像图表
在CSV文件中,以,作为分隔符,分隔两个单元格。像这样a,,c表示单元格a和单元格c之间有个空白的单元格。依此类推。

不是每个逗号都表示单元格之间的分界。所以即使CSV是纯文本文件,也坚持使用专门的模块进行处理。Python内置了csv模块。先看看一个简单的例子。

从CSV文件中读取数据
import csv

filename = 'F:/Jupyter Notebook/matplotlib_pygal_csv_json/sitka_weather_2014.csv'
with open(filename) as f:
reader = csv.reader(f)
print(list(reader))
data不能直接打印,list(data)最外层是list,里层的每一行数据都在一个list中,有点像这样

[['name', 'age'], ['Bob', '14'], ['Tom', '23'], ...]

//代码效果参考:https://v.youku.com/v_show/id_XNjQwNjgyMTg5Mg==.html
于是我们可以这样访问到Bob的年龄reader[1][1], 在for循环中遍历如下

import csv

filename = 'F:/Jupyter Notebook/matplotlib_pygal_csv_json/sitka_weather_2014.csv'
with open(filename) as f:
reader = csv.reader(f)
for row in reader:

    # 行号从1开始
    print(reader.line_num, row)

截取一部分输出

1 ['AKST', 'Max TemperatureF', 'Mean TemperatureF', 'Min TemperatureF', 'Max Dew PointF', 'MeanDew PointF', 'Min DewpointF', 'Max Humidity', ' Mean Humidity', ' Min Humidity', ' Max Sea Level PressureIn', ' Mean Sea Level PressureIn', ' Min Sea Level PressureIn', ' Max VisibilityMiles', ' Mean VisibilityMiles', ' Min VisibilityMiles', ' Max Wind SpeedMPH', ' Mean Wind SpeedMPH', ' Max Gust SpeedMPH', 'PrecipitationIn', ' CloudCover', ' Events', ' WindDirDegrees']
2 ['2014-1-1', '46', '42', '37', '40', '38', '36', '97', '86', '76', '29.95', '29.77', '29.57', '10', '8', '2', '25', '14', '36', '0.69', '8', 'Rain', '138']
...
前面的数字是行号,从1开始,可以用reader.line_num获取。

要注意的是,reader只能被遍历一次。由于reader是可迭代对象,可以使用next方法一次获取一行。

import csv

filename = 'F:/Jupyter Notebook/matplotlib_pygal_csv_json/sitka_weather_2014.csv'
with open(filename) as f:
reader = csv.reader(f)

# 读取一行,下面的reader中已经没有该行了
head_row = next(reader)
for row in reader:
    # 行号从2开始
    print(reader.line_num, row)

写数据到csv文件中
有reader可以读取,当然也有writer可以写入。一次写入一行,一次写入多行都可以。

import csv

使用数字和字符串的数字都可以

datas = [['name', 'age'],
['Bob', 14],
['Tom', 23],
['Jerry', '18']]

with open('example.csv', 'w', newline='') as f:
writer = csv.writer(f)
for row in datas:
writer.writerow(row)

# 还可以写入多行
writer.writerows(datas)

如果不指定newline='',则每写入一行将有一空行被写入。上面的代码生成如下内容。

name,age
Bob,14
Tom,23
Jerry,18
name,age
Bob,14
Tom,23
Jerry,18
DictReader和DictWriter对象
使用DictReader可以像操作字典那样获取数据,把表的第一行(一般是标头)作为key。可访问每一行中那个某个key对应的数据。

import csv

//代码效果参考:https://v.youku.com/v_show/id_XNjQwNjgyMDM3Mg==.html

filename = 'F:/Jupyter Notebook/matplotlib_pygal_csv_json/sitka_weather_2014.csv'
with open(filename) as f:
reader = csv.DictReader(f)
for row in reader:

    # Max TemperatureF是表第一行的某个数据,作为key
    max_temp = row['Max TemperatureF']
    print(max_temp)
相关文章
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
49 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
18天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
39 5
|
22天前
|
数据处理 Apache 数据库
将 Python UDF 部署到 Apache IoTDB 的详细步骤与注意事项
【10月更文挑战第21天】将 Python UDF 部署到 Apache IoTDB 中需要一系列的步骤和注意事项。通过仔细的准备、正确的部署和测试,你可以成功地将自定义的 Python UDF 应用到 Apache IoTDB 中,为数据处理和分析提供更灵活和强大的支持。在实际操作过程中,要根据具体情况进行调整和优化,以确保实现最佳的效果。还可以结合具体的代码示例和实际部署经验,进一步深入了解和掌握这一过程。
20 2
|
2月前
|
数据挖掘 数据处理 索引
python 读取数据存为csv
在Python中,读取数据并将其保存为CSV(逗号分隔值)文件是一种常见的操作,特别适用于数据分析和数据科学领域。这里将展示如何使用Python的内置库`csv`和流行的数据处理库`pandas`来完成这项任务。 ### 使用`csv`模块 如果你正在处理的是简单的文本数据或者需要更低层次的控制,可以使用Python的`csv`模块。以下是一个基本示例,演示如何将数据写入CSV文件: ```python import csv # 假设这是你要写入CSV的数据 rows = [ ["Name", "Age", "City"], ["Alice", 24, "New Yor
87 36
|
1月前
|
Python
Python实用记录(四):os模块-去后缀或者改后缀/指定目录下图片或者子目录图片写入txt/csv
本文介绍了如何使用Python的os模块来操作文件,包括更改文件后缀、分割文件路径和后缀、将指定目录下的所有图片写入txt文档,以及将指定目录下所有子目录中的图片写入csv文档,并为每个子目录分配一个标签。
16 1
|
2月前
|
机器学习/深度学习 数据挖掘 测试技术
自学Python的系统策略与步骤
通过遵循这些步骤和策略,你可以系统地自学Python,并有效地构建和深化你的编程知识和技能。
31 6
|
2月前
|
NoSQL Linux Redis
linux安装单机版redis详细步骤,及python连接redis案例
这篇文章提供了在Linux系统中安装单机版Redis的详细步骤,并展示了如何配置Redis为systemctl启动,以及使用Python连接Redis进行数据操作的案例。
68 2
|
1月前
|
存储 JSON 数据格式
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
35 0
|
2月前
|
数据采集 数据挖掘 数据处理
使用Python和Pandas处理CSV数据
使用Python和Pandas处理CSV数据
116 5
|
2月前
|
自然语言处理 算法 数据可视化
9-4|Python在一群人聊天记录中提取关键字 需要什么步骤
9-4|Python在一群人聊天记录中提取关键字 需要什么步骤