YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】

简介: Transformer中的多头自注意力机制(Multi-Head Self-Attention, MHSA)被用来增强模型捕捉序列数据中复杂关系的能力。该机制通过并行计算多个注意力头,使模型能关注不同位置和子空间的特征,提高了表示多样性。在YOLOv8的改进中,可以将MHSA代码添加到`/ultralytics/ultralytics/nn/modules/conv.py`,以增强网络的表示能力。完整实现和教程可在提供的链接中找到。

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

多头自注意力机制(Multi-Head Self-Attention)是Transformer模型中的一个核心概念,它允许模型在处理序列数据时同时关注不同的位置和表示子空间。这种机制是“自注意力”(Self-Attention)的一种扩展,自注意力又称为内部注意力(Intra-Attention),是一种注意力机制,用于对序列中的每个位置进行加权,以便在编码每个位置时能够考虑到序列中的其他位置。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

  1. 原理

多头自注意力机制(Multi-Head Self-Attention, MHSA)是深度学习中的一种机制,主要用于提升模型捕捉复杂关系和不同尺度特征的能力。它是自注意力机制的扩展和增强版本,广泛应用于Transformer模型中,如BERT和GPT等。以下是多头自注意力机制的主要原理:

自注意力机制

首先,了解自注意力机制(Self-Attention Mechanism)的基础原理非常重要。在自注意力机制中,输入序列的每个元素(通常是词或词向量)都会根据其与其他元素的相关性进行加权。具体步骤如下:

image.png

主要优点

  • 捕捉多种特征:多头机制允许模型在不同的子空间中捕捉输入的多种特征和关系。
  • 增强表示能力:通过多头注意力,模型可以同时关注输入序列的不同部分,提高表示的多样性和丰富性。
  • 稳定训练:多头机制还可以缓解单头注意力可能出现的不稳定性问题。

总之,多头自注意力机制通过并行计算多个注意力头,有效增强了模型的表示能力,使其能够更好地捕捉序列数据中的复杂模式和关系。这一机制在自然语言处理和其他序列数据任务中表现出色,是Transformer模型成功的关键组件之一。

2. 多头自注意力机制代码实现

2.1 将MHSA添加到YOLOv8代码中

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中,并在该文件的__all__中添加“MHSA”
class MHSA(nn.Module):
    def __init__(self, n_dims, width=14, height=14, heads=4, pos_emb=False):
        super(MHSA, self).__init__()
 
        self.heads = heads
        self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.pos = pos_emb
        if self.pos:
            self.rel_h_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, 1, int(height)]),
                                             requires_grad=True)
            self.rel_w_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, int(width), 1]),
                                             requires_grad=True)
        self.softmax = nn.Softmax(dim=-1)
 
    def forward(self, x):

完整内容:YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】——点击即可跳转

相关文章
|
2月前
|
网络协议 安全 5G
网络与通信原理
【10月更文挑战第14天】网络与通信原理涉及众多方面的知识,从信号处理到网络协议,从有线通信到无线通信,从差错控制到通信安全等。深入理解这些原理对于设计、构建和维护各种通信系统至关重要。随着技术的不断发展,网络与通信原理也在不断演进和完善,为我们的生活和工作带来了更多的便利和创新。
76 3
|
3天前
|
前端开发 网络协议 安全
【网络原理】——HTTP协议、fiddler抓包
HTTP超文本传输,HTML,fiddler抓包,URL,urlencode,HTTP首行方法,GET方法,POST方法
|
3天前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
3天前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。
|
3天前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密
|
3天前
|
XML JSON 网络协议
【网络原理】——拥塞控制,延时/捎带应答,面向字节流,异常情况
拥塞控制,延时应答,捎带应答,面向字节流(粘包问题),异常情况(心跳包)
|
5天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
40 1
|
3天前
|
网络协议 算法 Java
【JavaEE】——初始网络原理
局域网,广域网,局域网连接方式,交换机,集线器,路由器,网络通信,五元组(源IP,源端口,目的IP,目的端口,协议),协议分层,TCP/IP五层网络协议,封装和分用,交换机和路由器的封装和分用
|
1月前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
1月前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
89 3

热门文章

最新文章