YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】

简介: Transformer中的多头自注意力机制(Multi-Head Self-Attention, MHSA)被用来增强模型捕捉序列数据中复杂关系的能力。该机制通过并行计算多个注意力头,使模型能关注不同位置和子空间的特征,提高了表示多样性。在YOLOv8的改进中,可以将MHSA代码添加到`/ultralytics/ultralytics/nn/modules/conv.py`,以增强网络的表示能力。完整实现和教程可在提供的链接中找到。

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

多头自注意力机制(Multi-Head Self-Attention)是Transformer模型中的一个核心概念,它允许模型在处理序列数据时同时关注不同的位置和表示子空间。这种机制是“自注意力”(Self-Attention)的一种扩展,自注意力又称为内部注意力(Intra-Attention),是一种注意力机制,用于对序列中的每个位置进行加权,以便在编码每个位置时能够考虑到序列中的其他位置。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

  1. 原理

多头自注意力机制(Multi-Head Self-Attention, MHSA)是深度学习中的一种机制,主要用于提升模型捕捉复杂关系和不同尺度特征的能力。它是自注意力机制的扩展和增强版本,广泛应用于Transformer模型中,如BERT和GPT等。以下是多头自注意力机制的主要原理:

自注意力机制

首先,了解自注意力机制(Self-Attention Mechanism)的基础原理非常重要。在自注意力机制中,输入序列的每个元素(通常是词或词向量)都会根据其与其他元素的相关性进行加权。具体步骤如下:

image.png

主要优点

  • 捕捉多种特征:多头机制允许模型在不同的子空间中捕捉输入的多种特征和关系。
  • 增强表示能力:通过多头注意力,模型可以同时关注输入序列的不同部分,提高表示的多样性和丰富性。
  • 稳定训练:多头机制还可以缓解单头注意力可能出现的不稳定性问题。

总之,多头自注意力机制通过并行计算多个注意力头,有效增强了模型的表示能力,使其能够更好地捕捉序列数据中的复杂模式和关系。这一机制在自然语言处理和其他序列数据任务中表现出色,是Transformer模型成功的关键组件之一。

2. 多头自注意力机制代码实现

2.1 将MHSA添加到YOLOv8代码中

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中,并在该文件的__all__中添加“MHSA”
class MHSA(nn.Module):
    def __init__(self, n_dims, width=14, height=14, heads=4, pos_emb=False):
        super(MHSA, self).__init__()
 
        self.heads = heads
        self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.pos = pos_emb
        if self.pos:
            self.rel_h_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, 1, int(height)]),
                                             requires_grad=True)
            self.rel_w_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, int(width), 1]),
                                             requires_grad=True)
        self.softmax = nn.Softmax(dim=-1)
 
    def forward(self, x):

完整内容:YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】——点击即可跳转

相关文章
|
10天前
|
安全 测试技术 虚拟化
VMware-三种网络模式原理
本文介绍了虚拟机三种常见网络模式(桥接模式、NAT模式、仅主机模式)的工作原理与适用场景。桥接模式让虚拟机如同独立设备接入局域网;NAT模式共享主机IP,适合大多数WiFi环境;仅主机模式则构建封闭的内部网络,适用于测试环境。内容简明易懂,便于理解不同模式的优缺点与应用场景。
100 0
|
10天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
|
16天前
|
机器学习/深度学习 算法 物联网
【SCI】利用信念传播在超密集无线网络中进行分布式信道分配(Matlab代码实现)
【SCI】利用信念传播在超密集无线网络中进行分布式信道分配(Matlab代码实现)
|
8天前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
147 11
|
10天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
6天前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
173 1
|
7天前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 传感器 分布式计算
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
|
10天前
|
传感器 数据采集 存储
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)

热门文章

最新文章