YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】

简介: Transformer中的多头自注意力机制(Multi-Head Self-Attention, MHSA)被用来增强模型捕捉序列数据中复杂关系的能力。该机制通过并行计算多个注意力头,使模型能关注不同位置和子空间的特征,提高了表示多样性。在YOLOv8的改进中,可以将MHSA代码添加到`/ultralytics/ultralytics/nn/modules/conv.py`,以增强网络的表示能力。完整实现和教程可在提供的链接中找到。

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

多头自注意力机制(Multi-Head Self-Attention)是Transformer模型中的一个核心概念,它允许模型在处理序列数据时同时关注不同的位置和表示子空间。这种机制是“自注意力”(Self-Attention)的一种扩展,自注意力又称为内部注意力(Intra-Attention),是一种注意力机制,用于对序列中的每个位置进行加权,以便在编码每个位置时能够考虑到序列中的其他位置。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:[YOLOv8改进——更新各种有效涨点方法——点击即可跳转](https://blog.csdn.net/m0_67647321/category_12548649.html)

  1. 原理

多头自注意力机制(Multi-Head Self-Attention, MHSA)是深度学习中的一种机制,主要用于提升模型捕捉复杂关系和不同尺度特征的能力。它是自注意力机制的扩展和增强版本,广泛应用于Transformer模型中,如BERT和GPT等。以下是多头自注意力机制的主要原理:

自注意力机制

首先,了解自注意力机制(Self-Attention Mechanism)的基础原理非常重要。在自注意力机制中,输入序列的每个元素(通常是词或词向量)都会根据其与其他元素的相关性进行加权。具体步骤如下:

image.png

主要优点

  • 捕捉多种特征:多头机制允许模型在不同的子空间中捕捉输入的多种特征和关系。

  • 增强表示能力:通过多头注意力,模型可以同时关注输入序列的不同部分,提高表示的多样性和丰富性。

  • 稳定训练:多头机制还可以缓解单头注意力可能出现的不稳定性问题。

总之,多头自注意力机制通过并行计算多个注意力头,有效增强了模型的表示能力,使其能够更好地捕捉序列数据中的复杂模式和关系。这一机制在自然语言处理和其他序列数据任务中表现出色,是Transformer模型成功的关键组件之一。

2. 多头自注意力机制代码实现

2.1 将MHSA添加到YOLOv8代码中

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中,并在该文件的all中添加“MHSA”

class MHSA(nn.Module):
    def __init__(self, n_dims, width=14, height=14, heads=4, pos_emb=False):
        super(MHSA, self).__init__()

        self.heads = heads
        self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.pos = pos_emb
        if self.pos:
            self.rel_h_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, 1, int(height)]),
                                             requires_grad=True)
            self.rel_w_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, int(width), 1]),
                                             requires_grad=True)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):

完整内容:YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】——点击即可跳转

相关文章
|
9天前
|
机器学习/深度学习 算法 计算机视觉
卷积神经网络(CNN)的工作原理深度解析
【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参数多等问题,但随着技术发展,CNN在计算机视觉领域的潜力将持续增长。
|
1天前
|
网络协议 网络架构 数据格式
网络原理,网络通信以及网络协议
网络原理,网络通信以及网络协议
4 1
|
2天前
|
机器学习/深度学习 算法 计算机视觉
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
5 0
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
|
5天前
|
机器学习/深度学习 搜索推荐 PyTorch
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
31 2
|
5天前
|
监控 网络协议 安全
Verilog代码在上网行为管理软件中的网络设备控制与协议分析
**Verilog摘要:** Verilog是硬件描述语言,用于数字电路设计和网络设备控制。它在上网行为管理软件中用于控制路由器、交换机等,例如通过简单模块控制端口状态。此外,Verilog还支持协议分析,如解析以太网帧提取MAC地址。监控数据可结合Verilog实现自动化提交,例如通过HTTP发送请求到服务器,实现实时监控和响应。这些示例展示了Verilog在网络安全和性能优化中的应用潜力。
35 1
|
2天前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】MSFN(Multi-Scale Feed-Forward Network):多尺度前馈网络
**HCANet: 高光谱图像去噪新方法**\n混合卷积与注意力网络(Hybrid Convolutional and Attention Network)是针对HSI去噪的创新模型,结合CNN和Transformer,强化全局与局部特征。它使用卷积注意力融合模块捕获长距离依赖和局部光谱相关性,多尺度前馈网络提升多尺度信息聚合。代码可在[GitHub](https://github.com/summitgao/HCANet)获取。
|
3天前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度神经网络(DNN):原理、应用与代码实践
【机器学习】深度神经网络(DNN):原理、应用与代码实践
13 0
|
8天前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
深度学习-[数据集+完整代码]基于卷积神经网络的缺陷检测
|
1月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
15天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
31 1

热门文章

最新文章