YOLOv8的多分类模型如何计算准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score模型评估参数

简介: YOLOv8的多分类模型如何计算准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score模型评估参数

前言

如下图是YOLOv8训练的多分类结果文件,只给出了混淆矩阵与TOP1与TOP5的准确率曲线。并没有给出最终各个类别的准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score等评估参数。因此我们需要额外计算每个类别的准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score评估参数。以及这些参数平均值本文的计算方式同样可以适用于其他分类模型的评估参数计算。

有了这些参数之后可以更加方便的进行不同分类模型的参数对比,或者模型改进前后的参数对比。

1.安装sklearn库

因为我们参数计算需要使用到机器学习库sklearn,因此我们需要先安装该库,命令如下:

pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

2.计算每个分类的评估参数

我的验证集目录如下,每个类别里面放置的是该类别对应的图片:

详细代码如下,其中real_labels pre_labels 分别代表真实标签与预测标签。

# -*- coding: utf-8 -*-
from ultralytics import YOLO
import matplotlib
import os
matplotlib.use('TkAgg')
from sklearn.metrics import accuracy_score, precision_score,f1_score,recall_score
from sklearn.metrics import classification_report
# 验证结果
model = YOLO('runs/classify/train/weights/best.pt')
# 模型标签
names = {0: 'Bacterial Blight', 1: 'Brown Streak Disease', 2: 'Green Mottle', 3: 'Healthy', 4: 'Mosaic Disease'}
# 验证集路径
base_path = 'datasets/Data/val'
# 将names的key与value值互换,存入dict_names中
dict_names = {v: k for k, v in names.items()}
# 存储真实标签
real_labels = []
# 存储预测标签
pre_labels = []
# 遍历base_path下的所有文件夹,每个文件夹是一个分类
for i in os.listdir(base_path):
    label = dict_names[i]
    # 获取base_path下的所有文件夹下的所有图片
    for j in os.listdir(os.path.join(base_path, i)):
        # 获取图片的路径
        img_path = os.path.join(base_path, i, j)
        # 检测图片
        res = model.predict(img_path)[0]
        # 图片真实标签
        real_labels.append(label)
        # 图片预测标签
        pre_labels.append(res.probs.top1)
print("每个类别的精确率、召回率和F1-Score:")
print(classification_report(real_labels, pre_labels, target_names=list(names.values())))

运行上述代码后,打印结果如下:

分别计算出了每个类别的准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score参数,并且给出了平均参数,就是macro avg那一行。

3. 单个平均参数计算

上面已经给出了所有的评估结果,如果我们只想单独计算的平均的准确率、精确率、F1分数和召回率,代码如下:

# 计算并打印一系列评估指标,包括准确率、精确率、F1分数和召回率
# 参数:
# real_labels: 真实标签列表,表示样本的真实类别
# pre_labels: 预测标签列表,表示模型预测的样本类别
print('单独计算的准确率、精确率、F1分数和召回率:')
# 1. accuracy_score: 准确率,表示预测正确的样本占总样本的比例
print('accuracy_score:',accuracy_score(real_labels, pre_labels))
# 2. precision_score: 精确率,表示预测为正类且实际为正类的样本占预测为正类样本的比例
print('precision_score:',precision_score(real_labels, pre_labels, average='macro'))
# 3. f1_score: F1分数,是精确率和召回率的调和平均值,综合评估精确度和召回率
print('f1_score:',f1_score(real_labels, pre_labels, average='macro'))
# 4. recall_score: 召回率,表示预测为正类且实际为正类的样本占实际正类样本的比例
print('recall_score:',recall_score(real_labels, pre_labels, average='macro'))

运行上述代码后,打印结果如下:

计算出这些模型评估结果之后可以更加方便的进行不同分类模型的性能对比,或者模型改进前后的性能对比


相关文章
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7258 1
|
机器学习/深度学习 计算机视觉
秒懂Precision精确率、Recall召回率-附代码和案例
秒懂Precision精确率、Recall召回率-附代码和案例
|
算法 计算机视觉
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解
【YOLOv8训练结果评估】YOLOv8如何使用训练好的模型对验证集进行评估及评估参数详解
|
12月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
18975 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
20114 2
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
18416 0
|
机器学习/深度学习 算法 vr&ar
YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
这个摘要主要涵盖了一个关于YOLO目标检测的深度学习专栏的内容概览。该专栏专注于YOLO算法的历史、前沿研究和实战应用,提供了一系列的文章,详细讲解了YOLO的改进方法,包括卷积优化、损失函数创新、注意力机制、网络结构和主干网络的更新,以及针对不同场景如红外成像、小目标检测等的应用。此外,还提供了每周多次的更新频率以保持内容的时效性,并指导读者进行论文写作和项目实现,包括具体的代码示例和实战项目,如行人检测、对象分割、姿态估计等。该专栏还涉及到面试准备和实习就业指导,帮助读者提升在图像算法领域的专业技能。
|
编解码 算法 计算机视觉
YOLOv8数据增强预处理方式详解:包括数据增强的作用,数据增强方式与方法
YOLOv8数据增强预处理方式详解:包括数据增强的作用,数据增强方式与方法
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)
|
测试技术 计算机视觉
【YOLOv8性能对比试验】YOLOv8n/s/m/l/x不同模型尺寸大小的实验结果对比及结论参考
【YOLOv8性能对比试验】YOLOv8n/s/m/l/x不同模型尺寸大小的实验结果对比及结论参考