【保姆级教程|YOLOv8改进】【5】精度与速度双提升,使用FasterNet替换主干网络

简介: 【保姆级教程|YOLOv8改进】【5】精度与速度双提升,使用FasterNet替换主干网络

1.FasterNet简介

摘要:为了设计快速的神经网络,许多研究工作一直专注于减少浮点运算(FLOPs)的数量。然而,我们观察到,FLOPs的这种减少,并不一定导致相似水平的延迟降低。这主要是由于低效的每秒浮点运算数(FLOPS)造成的。为了实现更快的网络,我们重审了流行的运算符,并演示了这种低FLOPS主要是由于运算符的频繁内存访问,特别是深度卷积。因此,我们提出了一种新颖的局部卷积(PConv),它通过削减冗余计算和内存访问,更高效地提取空间特征。在我们的PConv上,我们进一步提出了FasterNet,一个新的神经网络家族,它在广泛的设备上实现了比其他网络更高的运行速度,同时在各种视觉任务上的精度不打折扣。例如,在ImageNet-1k上,我们的小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快3.1倍、3.1倍和2.5倍,同时精度提高了2.9%。我们的大型FasterNet-L取得了令人印象深刻的83.5%的top-1精度,与新兴的Swin-B不相上下,同时在GPU上的推理吞吐量提高了49%,以及在CPU上节省了42%的计算时间。

论文主要亮点如下:

• 强调了为了实现更快的神经网络,提升每秒浮点运算数(FLOPS)的重要性,而不仅仅是减少FLOPs。

• 引入了一个简单但快速且有效的运算符,称为PConv,它具有很高的潜力来替代现有的首选选项,即深度卷积(DWConv)。

• 介绍了FasterNet,它在GPU、CPU和ARM处理器等各种设备上都能流畅且普遍地快速运行。

• 在各种任务上进行了广泛的实验,并验证了我们的PConv和FasterNet的高速度和有效性。

1.1 网络结构

1.2 性能对比

2.YOLOv8替换主干步骤

YOLOv8网络结构前后对比

定义FasterNet相关类

ultralytics/nn/modules/block.py中添加如下代码块,为FasterNet源码:

并在ultralytics/nn/modules/block.py中最上方添加如下代码:

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:

ultralytics/nn/tasks.py 上方导入相应类名,并在parse_model解析函数中添加如下代码:

elif m in [BasicStage]:
                args.pop(1)

ultralytics/nn/tasks.py 中搜索self.model.modules(),定位到如下代码,并且在下方添加如下方框中的代码内容:

ultralytics/cfg/models/v8文件夹下新建yolov8-FasterNet.yaml文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, PatchEmbed_FasterNet, [40, 4, 4]]  # 0-P1/4
  - [-1, 1, BasicStage, [40, 1]]  # 1
  - [-1, 1, PatchMerging_FasterNet, [80, 2, 2]]  # 2-P2/8
  - [-1, 2, BasicStage, [80, 1]]  # 3-P3/16
  - [-1, 1, PatchMerging_FasterNet, [160, 2, 2]]  # 4
  - [-1, 8, BasicStage, [160, 1]]  # 5-P4/32
  - [-1, 1, PatchMerging_FasterNet, [320, 2, 2]] # 6
  - [-1, 2, BasicStage, [320, 1]] # 7
  - [-1, 1, SPPF, [320, 5]]  # 8
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 5], 1, Concat, [1]]  # cat backbone P4
  - [-1, 1, C2f, [512]]  # 11
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 3], 1, Concat, [1]]  # cat backbone P3
  - [-1, 1, C2f, [256]]  # 14 (P3/8-small)
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 11], 1, Concat, [1]]  # cat head P4
  - [-1, 1, C2f, [512]]  # 17 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 8], 1, Concat, [1]]  # cat head P5
  - [-1, 1, C2f, [1024]]  # 20 (P5/32-large)
  - [[14, 17, 20], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-FasterNet.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=30, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

相关文章
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
58 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
|
1月前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
76 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
64 13
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
77 12
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
|
1月前
|
机器学习/深度学习 编解码 数据可视化
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
61 11
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
|
1月前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
49 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
1月前
|
监控 Linux PHP
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
80 20
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
95 17
|
3月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
67 10

热门文章

最新文章