1245 - Harmonic Number (II)
Time Limit: 3 second(s) | Memory Limit: 32 MB |
I was trying to solve problem '1234 - Harmonic Number', I wrote the following code
long long H( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
res = res + n / i;
return res;
}
Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n < 231).
Output
For each case, print the case number and H(n) calculated by the code.
Sample Input |
Output for Sample Input |
11 1 2 3 4 5 6 7 8 9 10 2147483647 |
Case 1: 1 Case 2: 3 Case 3: 5 Case 4: 8 Case 5: 10 Case 6: 14 Case 7: 16 Case 8: 20 Case 9: 23 Case 10: 27 Case 11: 46475828386 |
就是根据这个代码:
long long H( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) res = res + n / i; return res; }我们要求的就是H(n);
解题思路:
首先我们观察一下数据范围,2^31次方有点大,暴力会超时,所以我们看看有没有啥规律,假设 tmp 是 n/i 的值,当n == 10的时候(取具体值)
当 tmp = 1 时,个数 是10/1 - 10/2 == 5个
当 tmp = 2 时,个数 是10/2 - 10/3 == 2个
当 tmp = 3 时,个数 是10/3 - 10/4 == 1个
…………
当 tmp = 10时,个数是10/10 - 10/11 == 1个
所以我们发现有个规律了,当tmp == i 的时候,我们要求的个数就是 10/i - 10/(i+1),然后我们前1 — sqrt(n)个数的数值还是比较大的,但是数据范围变小了
暴力可以求出来,剩下的 sqrt(n)+1 — n个数中 数据范围还是比较大,但是 n/i 的数据范围介于 1 - sqrt(n)之间,所以用我们找出的规律可以求出来,我们只需要
两个for循环就搞定了,时间复杂度 O(sqrt(n)),完全可以,剩下的就是编写程序了
上代码:
#include <iostream> #include <cmath> using namespace std; typedef long long LL; int main() { int T; LL n; cin>>T; for(int cas=1; cas<=T; cas++) { cin>>n; int m = sqrt(n); LL ret = 0; for(int i=1; i<=m; i++) ret += n/i; for(int i=1; i<=m; i++) ret += (n/i - n/(i+1))*i; if(m == n/m) ret -= m; cout<<"Case "<<cas<<": "<<ret<<endl; } return 0; }