计算机网络——第一章时延部分深入学习、相关习题及详细解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 计算机网络——第一章时延部分深入学习、相关习题及详细解析

时延相关

之前我们学习过,时延由发送时延、传播时延和处理时延三部分构成。

发送时延的计算公式为“分组长度除以发送速率”,

发送速率应该从网卡速率、信道带宽、以及对端的接口速率中取最小。

传播时延的计算公式为“信道长度除以电磁波传播速率”,

处理时延一般不方便计算。

下面更深入地探讨一下发送时延和传播时延。


假设主机要发送数据,横坐标表示距离,链路带宽为1Mb/s,信号在该链路上的传播速率为m/s。



主机发送1个比特的信号,由于该链路的带宽为1Mb/s,因此主机的发送速率可以是1Mb/s。那么主机发送完发送完1比特的时间为(1b)/(1Mb/s)。结果为

此时表示该比特的信号的前端已经传播出去200m了,也就是用 乘以信号在该链路上的传播速率 m/s即可得出。

紧跟着第一个比特的信号,主机发送完第二个比特的信号。很显然,第二个比特也要耗费 的发送时间,此时共耗费 。并且第一个比特的信号前端已经传播出去400m了。


而第二个比特的信号前端传播出去200m,以此类推:

如果我们把链路带宽提高8倍,到8Mb/s,信号在该链路上的传播速率不变;

那么经过 的时间,主机可以发送的信号就变成了8个比特,单位时间内发送比特的数量是原来的8倍:

习题1

两主机间的链路长度为60m,链路带宽为10Mb/s,信号的传播速率为 m/s, 其中一台主机给另一台主机发送1b信息,当主机接收完该信息时共耗费多长时间?

解析

发送时延 =

传播时延 =

总时延为

下面分别是距离为20m和10m的计算情况:

习题1-改

两主机间的链路长度为60m,链路带宽为10Mb/s,信号的传播速率为 m/s, 若其中一台主机给另一台主机连续发送n比特信息,当主机接收完该信息时共耗费多长时间?

错误解法:

正确解法


解析

比特信号是一个跟着一个向前同时传播的,因此,无论有多少个比特,在总时延中只包含一个传播时延。增加比特数量,只是增大了发送时延,而传播的时延数量不变。

示意图:(横坐标表示时间,纵坐标表示一段或多段链路)


用这样的平行四边形来表示数据传输,这样非常容易看出发送时延和传播时延。


由于比特单位太小,我们讨论问题时,常常使用分组。一个分组由若干个比特构成。


因此,可以得出这样的结论:


若主机在一段链路上连续发送分组,则总时延为所有分组的发送时延加上信号在这一段链路上的传播时延。


我们来看看分组在分组交换网(也就是多段链路)上的传输情况:



若有n个分组,m段链路,则总时延是多少?


总时延= n个分组的发送时延 + 1个分组的发送时延 * (m - 1) + 1段链路的传播时延 * m


m-1其实是转发次数,m段链路就有(m-1)次转发。


(注意该结论的前提是:假设分组等长,各链路长度相同、带宽也相同,忽略路由器的处理时延

习题2

试在下列条件下比较电路交换和分组交换。

要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),带宽为b(bit/s)。 在电路交换时,电路的建立时间为s(s)。在分组交换时,报文可被划分成若干个长度为

p(bit)的数据段,添加首部后即可构成分组,假设分组首部的长度以及分组在各结点的排队等待时间忽略不计。

问在怎样的条件下,电路交换的的时延比分组交换的要大?

先计算电路交换的总时延,根据题意,画出示意图:(横坐标为时间,纵坐标表示k段链路)

电路交换的总时延等于电路建立时间s,加上x个比特的发送时延x/b,加上信号在k段链路上的传播时延kd。

即,电路交换的时延 =

再来计算分组交换的总时延

运用刚才的学习内容和结论,很容易就可以得出本题的分组交换总时延:

即,分组交换的时延 =

p/b是1个分组的发送时延,x/p是分组的数量,k是链路数量,那么(k-1)就是转发次数,kd是k段链路的传播时延。

最后,令电路交换的时延大于分组交换的时延,解不等式得:


END



目录
相关文章
|
11天前
|
数据采集 监控 安全
网络安全中的威胁情报与风险管理:技术解析与策略
【7月更文挑战第4天】网络安全中的威胁情报与风险管理是保障网络安全的重要手段。通过收集、分析和处理各种威胁情报,可以及时发现并应对潜在的网络威胁;而通过科学的风险管理流程,可以构建稳固的防御体系,降低安全风险。未来,随着技术的不断进步和应用场景的拓展,威胁情报与风险管理技术将不断发展和完善,为网络安全提供更加坚实的保障。
|
1天前
|
SQL 安全 网络安全
网络安全与信息安全:从漏洞到防护的全方位解析
【7月更文挑战第14天】在数字时代的浪潮中,网络安全与信息安全成为维护社会稳定和保护个人隐私的关键。本文深入探讨了网络环境中常见的安全漏洞、先进的加密技术以及提升安全意识的有效策略。通过分析最新的网络攻击案例和防御手段,旨在为读者提供一套实用的网络安全知识体系,帮助公众和企业构建更为坚固的信息安全防线。
|
2天前
|
域名解析 存储 网络协议
一次读懂网络分层:应用层到物理层全解析
**网络五层模型简介:** 探索网络服务的分层结构,从应用层开始,包括HTTP(网页传输)、SMTP(邮件)、DNS(域名解析)和FTP(文件传输)协议。传输层涉及TCP(可靠数据传输)和UDP(高效但不可靠)。网络层由IP(路由数据包)、ICMP(错误报告)和路由器构成。数据链路层处理MAC地址和帧传输,物理层规定了电缆、连接器和信号标准。了解这些基础,有助于深入理解网络运作机制。
11 5
|
2天前
|
SQL 安全 网络安全
数字堡垒的裂缝与防御:网络安全漏洞解析与加密技术应用
【7月更文挑战第13天】在数字化浪潮中,网络安全漏洞如同潜藏的陷阱,威胁着信息资产的安全。本文将深入剖析常见的网络攻击手段和安全漏洞,揭示它们背后的原因和影响。同时,探讨加密技术如何成为守护数据安全的利剑,以及提升个人与企业的安全意识在防范网络风险中的关键作用。通过案例分析和策略建议,旨在为读者提供一套实用的网络安全知识框架,强化数字世界的防护壁垒。
|
3天前
|
网络协议 程序员 定位技术
学习网络的第一步:全面解析OSI与TCP/IP模型
**网络基础知识概览:** 探索网络通信的关键模型——OSI七层模型和TCP/IP五层模型。OSI模型(物理、数据链路、网络、传输、会话、表示、应用层)提供理论框架,而TCP/IP模型(物理、数据链路、网络、传输、应用层)更为实际,合并了会话、表示和应用层。两者帮助理解数据在网络中的传输过程,为网络设计和管理提供理论支持。了解这些模型,如同在复杂的网络世界中持有了地图。
9 2
|
8天前
|
存储 安全 网络安全
网络安全中的安全审计与合规性:技术深度解析
【7月更文挑战第7天】安全审计与合规性是保障网络安全的重要环节。通过安全审计,企业可以及时发现并修复安全漏洞,提高系统的安全性;通过合规性管理,企业可以确保自身在法律法规和行业标准方面的合规性,降低违规风险。然而,在实施安全审计与合规性管理的过程中,企业也面临着技术复杂性、数据量大以及法规和合规性要求变化等挑战。因此,企业需要不断加强技术投入和人员培训,提高自身的安全审计与合规性管理水平。
|
12天前
|
安全 测试技术 网络安全
网络安全中的渗透测试与风险评估:技术深度解析
【7月更文挑战第3天】在网络安全领域,渗透测试和风险评估是两种不可或缺的技术手段。通过模拟黑客的攻击手段来发现系统中的安全漏洞,以及通过系统性的方法来识别和评估潜在的风险和威胁,两者共同为组织提供了全面的网络安全保障。随着技术的不断发展和网络环境的日益复杂,渗透测试和风险评估的重要性将日益凸显。因此,网络安全从业者应不断学习和掌握这两种技术,以应对日益严峻的网络安全挑战。
|
4天前
|
安全 算法 网络安全
网络安全与信息安全:从漏洞到防御的全方位解析
在数字化时代,网络安全和信息安全的重要性日益凸显。本文将从网络安全漏洞、加密技术、安全意识等方面进行全面的知识分享,旨在帮助读者更好地理解网络安全和信息安全的重要性,并掌握相应的防护措施。
9 0
|
13天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:漏洞、加密技术及安全意识的深度解析
在数字化时代,网络安全和信息安全的重要性日益凸显。本文将深入探讨网络安全漏洞、加密技术以及安全意识等方面,以期为读者提供更全面的知识分享。我们将通过数据支持的观点、科学严谨的分析以及逻辑严密的论证结构,揭示这些主题之间的相互关联性,并提出相应的解决方案。
9 0
|
24天前
|
机器学习/深度学习 网络协议 网络性能优化
[计算机网络]深度学习传输层TCP协议
[计算机网络]深度学习传输层TCP协议
26 1

推荐镜像

更多