计算机网络——第一章时延部分深入学习、相关习题及详细解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 计算机网络——第一章时延部分深入学习、相关习题及详细解析

时延相关

之前我们学习过,时延由发送时延、传播时延和处理时延三部分构成。

发送时延的计算公式为“分组长度除以发送速率”,

发送速率应该从网卡速率、信道带宽、以及对端的接口速率中取最小。

传播时延的计算公式为“信道长度除以电磁波传播速率”,

处理时延一般不方便计算。

下面更深入地探讨一下发送时延和传播时延。


假设主机要发送数据,横坐标表示距离,链路带宽为1Mb/s,信号在该链路上的传播速率为m/s。



主机发送1个比特的信号,由于该链路的带宽为1Mb/s,因此主机的发送速率可以是1Mb/s。那么主机发送完发送完1比特的时间为(1b)/(1Mb/s)。结果为

此时表示该比特的信号的前端已经传播出去200m了,也就是用 乘以信号在该链路上的传播速率 m/s即可得出。

紧跟着第一个比特的信号,主机发送完第二个比特的信号。很显然,第二个比特也要耗费 的发送时间,此时共耗费 。并且第一个比特的信号前端已经传播出去400m了。


而第二个比特的信号前端传播出去200m,以此类推:

如果我们把链路带宽提高8倍,到8Mb/s,信号在该链路上的传播速率不变;

那么经过 的时间,主机可以发送的信号就变成了8个比特,单位时间内发送比特的数量是原来的8倍:

习题1

两主机间的链路长度为60m,链路带宽为10Mb/s,信号的传播速率为 m/s, 其中一台主机给另一台主机发送1b信息,当主机接收完该信息时共耗费多长时间?

解析

发送时延 =

传播时延 =

总时延为

下面分别是距离为20m和10m的计算情况:

习题1-改

两主机间的链路长度为60m,链路带宽为10Mb/s,信号的传播速率为 m/s, 若其中一台主机给另一台主机连续发送n比特信息,当主机接收完该信息时共耗费多长时间?

错误解法:

正确解法


解析

比特信号是一个跟着一个向前同时传播的,因此,无论有多少个比特,在总时延中只包含一个传播时延。增加比特数量,只是增大了发送时延,而传播的时延数量不变。

示意图:(横坐标表示时间,纵坐标表示一段或多段链路)


用这样的平行四边形来表示数据传输,这样非常容易看出发送时延和传播时延。


由于比特单位太小,我们讨论问题时,常常使用分组。一个分组由若干个比特构成。


因此,可以得出这样的结论:


若主机在一段链路上连续发送分组,则总时延为所有分组的发送时延加上信号在这一段链路上的传播时延。


我们来看看分组在分组交换网(也就是多段链路)上的传输情况:



若有n个分组,m段链路,则总时延是多少?


总时延= n个分组的发送时延 + 1个分组的发送时延 * (m - 1) + 1段链路的传播时延 * m


m-1其实是转发次数,m段链路就有(m-1)次转发。


(注意该结论的前提是:假设分组等长,各链路长度相同、带宽也相同,忽略路由器的处理时延

习题2

试在下列条件下比较电路交换和分组交换。

要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),带宽为b(bit/s)。 在电路交换时,电路的建立时间为s(s)。在分组交换时,报文可被划分成若干个长度为

p(bit)的数据段,添加首部后即可构成分组,假设分组首部的长度以及分组在各结点的排队等待时间忽略不计。

问在怎样的条件下,电路交换的的时延比分组交换的要大?

先计算电路交换的总时延,根据题意,画出示意图:(横坐标为时间,纵坐标表示k段链路)

电路交换的总时延等于电路建立时间s,加上x个比特的发送时延x/b,加上信号在k段链路上的传播时延kd。

即,电路交换的时延 =

再来计算分组交换的总时延

运用刚才的学习内容和结论,很容易就可以得出本题的分组交换总时延:

即,分组交换的时延 =

p/b是1个分组的发送时延,x/p是分组的数量,k是链路数量,那么(k-1)就是转发次数,kd是k段链路的传播时延。

最后,令电路交换的时延大于分组交换的时延,解不等式得:


END



目录
相关文章
|
6天前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
20 5
|
7天前
|
SQL 安全 网络安全
网络安全的护城河:漏洞防御与加密技术的深度解析
【10月更文挑战第37天】在数字时代的浪潮中,网络安全成为守护个人隐私与企业资产的坚固堡垒。本文将深入探讨网络安全的两大核心要素——安全漏洞和加密技术,以及如何通过提升安全意识来强化这道防线。文章旨在揭示网络攻防战的复杂性,并引导读者构建更为稳固的安全体系。
18 1
|
16天前
|
SQL 安全 测试技术
网络安全的盾牌与剑——漏洞防御与加密技术解析
【10月更文挑战第28天】 在数字时代的浪潮中,网络空间安全成为我们不可忽视的战场。本文将深入探讨网络安全的核心问题,包括常见的网络安全漏洞、先进的加密技术以及提升个人和组织的安全意识。通过实际案例分析和代码示例,我们将揭示黑客如何利用漏洞进行攻击,展示如何使用加密技术保护数据,并强调培养网络安全意识的重要性。让我们一同揭开网络安全的神秘面纱,为打造更加坚固的数字防线做好准备。
35 3
RS-485网络中的标准端接与交流电端接应用解析
RS-485,作为一种广泛应用的差分信号传输标准,因其传输距离远、抗干扰能力强、支持多点通讯等优点,在工业自动化、智能建筑、交通运输等领域得到了广泛应用。在构建RS-485网络时,端接技术扮演着至关重要的角色,它直接影响到网络的信号完整性、稳定性和通信质量。
|
6天前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
32 3
|
6天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
19 2
|
13天前
|
SQL 安全 算法
网络安全的屏障与钥匙:漏洞防护与加密技术解析
【10月更文挑战第31天】在数字世界的海洋中,网络安全是航船的坚固屏障,而信息安全则是守护宝藏的金钥匙。本文将深入探讨网络安全的薄弱环节——漏洞,以及如何通过加密技术加固这道屏障。从常见网络漏洞的类型到最新的加密算法,我们不仅提供理论知识,还将分享实用的安全实践技巧,帮助读者构建起一道更加坚不可摧的防线。
23 1
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
26 0
|
6天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
19 2
|
7天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。

推荐镜像

更多