OpenCV基础demo

简介: OpenCV基础demo

一、读取图像

//图片路径
  QString appPath = QCoreApplication::applicationDirPath();
  QString imagePath = appPath + "/sun.png";
  //读取图像
  cv::Mat img = cv::imread(imagePath.toStdString()); //IMREAD_GRAYSCALE 灰度图 IMREAD_UNCHANGED 具有透明通道
  if (img.empty()) {
    qDebug()<< "Could not load image!\n";
    return;
  }
  //创建窗口
  cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
  //显示图像
  cv::imshow("input", img);
  //参数为0一直阻塞
  cv::waitKey(0);
  //销毁窗口
  cv::destroyAllWindows();

二、保存图像

//保存为png透明通道
  vector<int>opts;
  opts.push_back(IMWRITE_PAM_FORMAT_RGB_ALPHA);
  imwrite("D:/img_bgra.png", img, opts);
  //保存为单通道灰度图像
  img = cv::imread(imagePath.toStdString(), IMREAD_GRAYSCALE);
  vector<int> opts_gray;
  opts_gray.push_back(IMWRITE_PAM_FORMAT_GRAYSCALE);
  imwrite("D:/img_gray.png", img, opts_gray);
  //保存为默认的彩色BGR图像
  imwrite("D:/img_BGR.png", img);
  //保存为png彩色压缩图像
  img = imread(imagePath.toStdString(), IMREAD_ANYCOLOR);
  vector<int> opts_png_anycolor;
  opts_png_anycolor.push_back(IMWRITE_PAM_FORMAT_GRAYSCALE);
  opts_png_anycolor.push_back(9);
  imwrite("D:/img_png_anycolor.png", img, opts_png_anycolor);
  //保存为JPG高压缩比图像
  img = imread(imagePath.toStdString(), IMREAD_COLOR);
  vector<int> opts_jpeg;
  opts_jpeg.push_back(IMWRITE_JPEG_QUALITY);
  opts_jpeg.push_back(50);
  opts_jpeg.push_back(IMWRITE_JPEG_OPTIMIZE);
  opts_jpeg.push_back(1);
  imwrite("D:/img_jpeg.jpg", img, opts_jpeg);

三、加载视频

//视频路径
  QString appPath = QCoreApplication::applicationDirPath();
  QString videoPath = appPath + "/vtest.avi";
  cv::VideoCapture capture;
  capture.open(videoPath.toStdString(),CAP_FFMPEG);
  //从摄像头读取
  //capture.open(0, CAP_DSHOW);
  cv::Mat frame;
  while (true) {
    //读帧
    bool ret = capture.read(frame);
    if (!ret)
      break;
    imshow("frame", frame);
    //添加帧处理 等待 100 毫秒,检查用户是否按下键盘上的按键
    char c = waitKey(100);
    //按下的是 ESC 键 (ASCII 值为 27),则跳出循环,停止播放视频
    if (c == 27)
      break;
  }
  waitKey(0);
  destroyAllWindows();

四、获取视频属性

//视频路径
  QString appPath = QCoreApplication::applicationDirPath();
  QString videoPath = appPath + "/vtest.avi";
  cv::VideoCapture capture;
  capture.open(videoPath.toStdString(),CAP_FFMPEG);
  qDebug() << u8"高:" << capture.get(CAP_PROP_FRAME_HEIGHT);
  qDebug() << u8"宽:" << capture.get(CAP_PROP_FRAME_WIDTH);
  qDebug() << u8"帧率FPS:" << QString::number(capture.get(CAP_PROP_FPS));
  qDebug() << u8"总帧率:" << capture.get(CAP_PROP_FRAME_COUNT);

五、保存视频

//视频路径
  QString appPath = QCoreApplication::applicationDirPath();
  QString videoPath = appPath + "/vtest.avi";
  cv::VideoCapture capture;
  capture.open(videoPath.toStdString(), CAP_FFMPEG);
  qDebug() << u8"高:" << capture.get(CAP_PROP_FRAME_HEIGHT);
  qDebug() << u8"宽:" << capture.get(CAP_PROP_FRAME_WIDTH);
  qDebug() << u8"帧率FPS:" << capture.get(CAP_PROP_FPS);
  qDebug() << u8"总帧率:" << capture.get(CAP_PROP_FRAME_COUNT);
  //保存视频路径
  QString savevideoPath = appPath + "/output.avi";
  cv::VideoWriter writer(savevideoPath.toStdString(), capture.get(CAP_PROP_FOURCC), capture.get(CAP_PROP_FPS), Size(capture.get(CAP_PROP_FRAME_WIDTH), capture.get(CAP_PROP_FRAME_HEIGHT)));
  cv::Mat frame;
  while (true) {
    //读帧
    bool ret = capture.read(frame);
    if (!ret)
      break;
    imshow("frame", frame);
    //添加帧处理 
    writer.write(frame);
    //等待 100 毫秒,检查用户是否按下键盘上的按键
    char c = waitKey(100);
    //按下的是 ESC 键 (ASCII 值为 27),则跳出循环,停止播放视频
    if (c == 27)
      break;
  }
  capture.release();
  writer.release();
  waitKey(0);
  destroyAllWindows();

六、Mat遍历

  1. 数组下标
for (int row = 0; row < h; row++)
  {
  for (int col = 0; col < w; col++)
  {
    if (dim == 1)//灰度图像
    {
    int pv = image.at<uchar>(row,col);//像素是字节类型
    image.at<uchar>(row, col) = 255 - pv;
    }
    if (dim == 3)//彩色图像
    {
    Vec3b bgr = image.at<Vec3b>(row, col);
    image.at<Vec3b>(row, col)[0] = 255 - bgr[0];
    image.at<Vec3b>(row, col)[1] = 255 - bgr[1];
    image.at<Vec3b>(row, col)[2] = 255 - bgr[2];
    }
  }
  }
  1. 指针
for (int row = 0; row < h; row++)
{
  uchar* current_row = image.ptr<uchar>(row);
  for (int col = 0; col < w; col++)
  {
    if (dim == 1)//灰度图像
    {
    int pv = *current_row;
    *current_row++ = 255 - *current_row;
    }
    if (dim == 3)//彩色图像
    {
    *current_row++ = 255 - *current_row;
    *current_row++ = 255 - *current_row;
    *current_row++ = 255 - *current_row;
    }
  }
}

七、Mat加减乘除

#include <opencv2/opencv.hpp>
using namespace cv;
int main() {
    Mat image = imread("image.jpg");
    if (image.empty()) {
        std::cout << "无法加载图像" << std::endl;
        return -1;
    }
    // 加法变换
    Mat addResult;
    add(image, Scalar(50, 50, 50), addResult); // 将像素值增加50
    // 减法变换
    Mat subtractResult;
    subtract(image, Scalar(50, 50, 50), subtractResult); // 将像素值减去50
    // 乘法变换
    Mat multiplyResult;
    multiply(image, Scalar(0.5, 0.5, 0.5), multiplyResult); // 将像素值乘以0.5
    // 除法变换
    Mat divideResult;
    divide(image, Scalar(2.0, 2.0, 2.0), divideResult); // 将像素值除以2.0
    imshow("Original Image", image);
    imshow("Addition Result", addResult);
    imshow("Subtraction Result", subtractResult);
    imshow("Multiplication Result", multiplyResult);
    imshow("Division Result", divideResult);
    waitKey(0);
    return 0;
}

七、亮度调节demo

Mat src, dst, m;
int lightness = 50;
static void on_track(int, void *)
{
  m = Scalar(lightness, lightness, lightness);
  //add(src,m,dst);
  subtract(src, m, dst);
  imshow("亮度调节", dst);
}
void on_pushButton_brightness_clicked()
{
  namedWindow("亮度调节", WINDOW_AUTOSIZE);
  QString appPath = QCoreApplication::applicationDirPath()+"/A.jpg";
  src = cv::imread(appPath.toStdString());
  dst = Mat::zeros(src.size(), src.type());
  m = Mat::zeros(src.size(), src.type());
  int max_value = 100;
  
  createTrackbar("Value Bar:", "亮度调节", &lightness, max_value, on_track);
  on_track(50, 0);
}
static void on_track(int b, void* user_data)
{
  Mat image = *((Mat *)user_data);
  Mat dst = Mat::zeros(image.size(), image.type());
  Mat m = Mat::zeros(image.size(), image.type());
  m = Scalar(b, b, b);
  //add(image,m,dst);
  subtract(image, m, dst);
  imshow("亮度调节", dst);
}
void introduction::on_pushButton_brightness_clicked()
{
  namedWindow("亮度调节", WINDOW_AUTOSIZE);
  
  int lightness = 50;
  int max_value = 100;
  //img为已经读入的图像
  createTrackbar("Value Bar:", "亮度调节", &lightness, max_value, on_track,(void*)(&img));
  on_track(50, &img);
}

八、亮度对比度调节

static void on_track_lightness(int b, void* user_data)
{
  Mat image = *((Mat *)user_data);
  if (image.empty())
    return;
  Mat dst = Mat::zeros(image.size(), image.type());
  Mat m = Mat::zeros(image.size(), image.type());
  addWeighted(image, 1.0, m, 0, b, dst);
  imshow("亮度对比度调节", dst);
}
static void on_track_contrast(int b, void* user_data)
{
  Mat image = *((Mat *)user_data);
  Mat dst = Mat::zeros(image.size(), image.type());
  Mat m = Mat::zeros(image.size(), image.type());
  double contrast = b / 100.0;
  addWeighted(image, contrast, m, 0.0, 0, dst);
  imshow("亮度对比度调节", dst);
}
void brightness_demo()
{
  namedWindow("亮度对比度调节", WINDOW_AUTOSIZE);
  
  int lightness = 50;
  int max_value = 100;
  int contrast_value = 100;
  createTrackbar("Value Bar:", "亮度对比度调节", &lightness, max_value, on_track_lightness,(void*)(&img));
  createTrackbar("Constrast Bar:", "亮度对比度调节", &contrast_value, 200, on_track_contrast, (void*)(&img));
  on_track_lightness(50, &img);
}

九、键盘响应操作

//图片路径
  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  //读取图像
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
  //显示图像
  cv::imshow("input", img);
  Mat dst = Mat::zeros(img.size(),img.type());
  while (true) {
    char c = waitKey(100);
    std::cout << c << std::endl;
    if (c == 27)
      break;
    if (c == 49)//Key 1
    {
      cvtColor(img, dst, COLOR_BGR2GRAY);
    }
    if (c == 50)//Key 2
    {
      cvtColor(img, dst, COLOR_BGR2HSV);
    }
    if (c == 51)//Key 3
    {
      dst = Scalar(50, 50, 50);
      add(img, dst, dst);
    }
    cv::imshow("input", dst);
  }
  //参数为0一直阻塞
  cv::waitKey(0);
  //销毁窗口
  cv::destroyAllWindows();

十、OpenCV自带颜色表

//图片路径
  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  //读取图像
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
  cv::Mat dst;
  int color_map = COLORMAP_AUTUMN;
  while (true)
  {
    int c = cv::waitKey(2000);
    if (c == 27) {
      break;
    }
    applyColorMap(img, dst, color_map%21);
    color_map++;
    cv::imshow("input", dst);
  }
  cv::waitKey(0);
  cv::destroyAllWindows();

十一、图像像素逻辑操作

cv::Mat m1 = cv::Mat::zeros(Size(256, 256), CV_8UC3);
  cv::Mat m2 = cv::Mat::zeros(Size(256, 256), CV_8UC3);
  rectangle(m1, Rect(100, 100, 80, 80),Scalar(255,255,0),-1,LINE_8,0);
  rectangle(m2, Rect(150, 150, 80, 80), Scalar(0, 255, 255), -1, LINE_8, 0);
  imshow("m1", m1);
  imshow("m2", m2);
  Mat dst;
  bitwise_and(m1, m2, dst);
  imshow("与操作", dst);
  bitwise_or(m1, m2, dst);
  imshow("或操作", dst);
  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  bitwise_not(img, dst);
  imshow("非操作", dst);
  bitwise_xor(m1, m2, dst);
  imshow("异或操作", dst);
  cv::waitKey(0);
  cv::destroyAllWindows();

十二、通道分离、合并、混和

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  std::vector<Mat> mv;
  cv::split(img, mv);
  imshow("B", mv[0]);
  imshow("G", mv[1]);
  imshow("R", mv[2]);
  cv::Mat dst;
  mv[1] = 0;
  mv[2] = 0;
  cv::merge(mv, dst);
  imshow("Blue", dst);
  int from_to[] = { 0,2,1,1,2,0 };
  cv::mixChannels(&img, 1, &dst, 1, from_to,3);
  imshow("通道混合", dst);

十三、图像色彩空间转换

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/sun.png";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  imshow("img", img);
  cv::Mat hsv;
  cv::cvtColor(img,hsv,COLOR_BGR2HSV);
  cv::Mat mask;
  inRange(hsv, Scalar(0,0,221), Scalar(180,30,255), mask);
  Mat redback = Mat::zeros(img.size(), img.type());
  redback = Scalar(40, 40, 200);
  bitwise_not(mask, mask);
  imshow("mask", mask);
  img.copyTo(redback, mask);
  imshow("roi", redback);

十四、图像像素值统计

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  double minv, maxv;
  Point minLoc, maxLoc;
  std::vector<Mat> mv;
  split(img, mv);
  for (int i = 0; i < mv.size(); i++)
  {
    //图像必须单通道
    minMaxLoc(mv[i], &minv, &maxv, &minLoc, &maxLoc, cv::Mat());
    std::cout << "channel" << i << "min value" << minv << "max value" << maxv<<std::endl ;
  }
  Mat mean, stddev;
  //计算均值方差
  meanStdDev(img,mean,stddev);
  std::cout << "mean" << mean << "stddev" << stddev << std::endl;

十五、图像几何形状绘制

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat bg = Mat::zeros(img.size(),img.type());
  Rect rect;
  rect.x = 200;
  rect.y = 200;
  rect.width = 100;
  rect.height = 50;
  rectangle(bg, rect, Scalar(0, 0, 255), -1,8,0);
  circle(bg, Point(50, 100), 15, Scalar(255, 0, 0), 2);
  line(bg, Point(100, 100), Point(100, 200), Scalar(0, 255, 0), 2, LINE_AA, 0);
  RotatedRect rrt(Point(200, 200),Size(100, 200), 90.0);
  ellipse(bg, rrt, Scalar(0, 255, 255), 2, 8);
  Mat dst;
  addWeighted(img, 0.7,bg,0.3,0, dst);
  imshow("Draw", dst);

十六、随机数与随机颜色绘制

Mat bg = Mat::zeros(Size(512,512), CV_8UC3);
  int w = bg.cols;
  int h = bg.rows;
  RNG rng(12345);
  while (true)
  {
    int c = cv::waitKey(10);
    if (c == 27) {
      break;
    }
    int x1 = rng.uniform(0, w);
    int y1 = rng.uniform(0, h);
    int x2 = rng.uniform(0, w);
    int y2 = rng.uniform(0, h);
    bg = Scalar(0, 0, 0);
    line(bg, Point(x1, y1), Point(x2, y2), Scalar(rng.uniform(0,255), rng.uniform(0, 255), rng.uniform(0, 255)), 2, LINE_AA, 0);
    imshow("Draw_random", bg);
  }

十七、多边形填充与绘制

Mat bg = Mat::zeros(Size(512, 512), CV_8UC3);
  Point p1(100, 100);
  Point p2(350, 100);
  Point p3(450, 280);
  Point p4(320, 450);
  Point p5(80, 400);
  std::vector<Point> pts;
  pts.push_back(p1);
  pts.push_back(p2);
  pts.push_back(p3);
  pts.push_back(p4);
  pts.push_back(p5);
  polylines(bg, pts, true, Scalar(0, 0, 255), 2, 8, 0);
  fillPoly(bg, pts, Scalar(0, 255, 255),8, 0);
  std::vector<std::vector<Point>> contours;
  contours.push_back(pts);
  drawContours(bg, contours, -1, Scalar(255, 0, 255), 2);
  imshow("Draw_polygon", bg);

十八、鼠标操作(画红色方框截取图像)

Point sp(-1, -1);
Point ep(-1, -1);
Mat temp;
static void on_draw(int event, int x, int y, int flags,void *user_data)
{
  Mat image = *((Mat *)user_data);
  if (event == EVENT_LBUTTONDOWN)
  {
    sp.x = x;
    sp.y = y;
  }
  else if (event == EVENT_LBUTTONUP)
  {
    ep.x = x;
    ep.y = y;
    int dx = ep.x - sp.x;
    int dy = ep.y - sp.y;
    if (dx > 0 && dy > 0)
    {
      Rect rect(sp.x,sp.y,dx,dy);
      rectangle(image, rect, Scalar(0, 0, 255), 2, 8, 0);
      imshow("mouse_draw", image);
      imshow("roi", image(rect));
      sp.x = -1;
      sp.y = -1;
    }
  }
  else if (event == EVENT_MOUSEMOVE)
  {
    if (sp.x > 0 && sp.y > 0)
    {
      ep.x = x;
      ep.y = y;
      int dx = ep.x - sp.x;
      int dy = ep.y - sp.y;
      if (dx > 0 && dy > 0)
      {
        temp.copyTo(image);
        Rect rect(sp.x, sp.y, dx, dy);
        rectangle(image, rect, Scalar(0, 0, 255), 2, 8, 0);
        imshow("mouse_draw", image);
      }
    }
  }
}
void mouse_demo()
{
  QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  temp = img.clone();
  namedWindow("mouse_draw", WINDOW_AUTOSIZE);
  setMouseCallback("mouse_draw", on_draw,(void*)(&img));
  imshow("mouse_draw", img);
}

十九、图像归一化

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat dst;
  img.convertTo(img, CV_32F);
  normalize(img, dst, 1.0, 0, NORM_MINMAX);
  imshow("normalize",dst);

二十、图像缩放

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat zoomin, zoomout;
  int h = img.rows;
  int w = img.cols;
  cv::resize(img, zoomin, Size(w/2,h/2),0,0,INTER_LINEAR);
  imshow("zoomin", zoomin);
  cv::resize(img, zoomout, Size(w * 2, h * 2), 0, 0, INTER_LINEAR);
  imshow("zoomout", zoomout);

二十一、图像翻转

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat dst;
  flip(img, dst, 0);//上下翻转
  imshow("flip0", dst);
  flip(img, dst, 1);//左右翻转
  imshow("flip1", dst);
  flip(img, dst, -1);//180°旋转
  imshow("flip-1", dst);
  int h = img.rows;
  int w = img.cols;
  Mat M = getRotationMatrix2D(Point2f(w / 2, h / 2), 45, 1.0);
  double cos = abs(M.at<double>(0, 0));
  double sin = abs(M.at<double>(0, 1));
  int nw = cos * w + sin * h;
  int nh = sin * w + cos * h;
  M.at<double>(0, 2) = M.at<double>(0, 2) + (nw / 2 - w / 2);
  M.at<double>(1, 2) = M.at<double>(1, 2) + (nh / 2 - h / 2);
  warpAffine(img, dst, M, Size(nw,nh),INTER_LINEAR,0,Scalar(255,0,0));
  imshow("rotate", dst);

二十二、图像直方图

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  // 三通道分离
  std::vector<Mat> bgr_plane;
  split(img, bgr_plane);
  // 定义参数变量
  const int channels[1] = { 0 };
  const int bins[1] = { 256 };
  float hranges[2] = { 0,255 };
  const float* ranges[1] = { hranges };
  Mat b_hist;
  Mat g_hist;
  Mat r_hist;
  // 计算Blue, Green, Red通道的直方图
  calcHist(&bgr_plane[0], 1, 0, Mat(), b_hist, 1, bins, ranges);
  calcHist(&bgr_plane[1], 1, 0, Mat(), g_hist, 1, bins, ranges);
  calcHist(&bgr_plane[2], 1, 0, Mat(), r_hist, 1, bins, ranges);
  // 显示直方图
  int hist_w = 512;
  int hist_h = 400;
  int bin_w = cvRound((double)hist_w / bins[0]);
  Mat histImage = Mat::zeros(hist_h, hist_w, CV_8UC3);
  // 归一化直方图数据
  normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
  normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
  normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
  // 绘制直方图曲线
  for (int i = 1; i < bins[0]; i++) {
    line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
      Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0), 2, 8, 0);
    line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
      Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0), 2, 8, 0);
    line(histImage, Point(bin_w*(i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),
      Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255), 2, 8, 0);
  }
  // 显示直方图
  namedWindow("Histogram Demo", WINDOW_AUTOSIZE);
  imshow("Histogram Demo", histImage);

二十三、二维直方图

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  // 2D 直方图
  Mat hsv, hs_hist;
  cvtColor(img, hsv, COLOR_BGR2HSV);
  int hbins = 30, sbins = 32;
  int hist_bins[] = { hbins, sbins };
  float h_range[] = { 0, 180 };
  float s_range[] = { 0, 256 };
  const float* hs_ranges[] = { h_range, s_range };
  int hs_channels[] = { 0, 1 };
  calcHist(&hsv, 1, hs_channels, Mat(), hs_hist, 2, hist_bins, hs_ranges, true, false);
  double maxVal = 0;
  minMaxLoc(hs_hist, 0, &maxVal, 0, 0);
  int scale = 10;
  Mat hist2d_image = Mat::zeros(sbins*scale, hbins * scale, CV_8UC3);
  for (int h = 0; h < hbins; h++) {
    for (int s = 0; s < sbins; s++)
    {
      float binVal = hs_hist.at<float>(h, s);
      int intensity = cvRound(binVal * 255 / maxVal);
      rectangle(hist2d_image, Point(h*scale, s*scale),
        Point((h + 1)*scale - 1, (s + 1)*scale - 1),
        Scalar::all(intensity),
        -1);
    }
  }
  applyColorMap(hist2d_image, hist2d_image, COLORMAP_JET);
  imshow("H-S Histogram", hist2d_image);
  imwrite("D:/hist_2d.png", hist2d_image);

二十四、直方图均衡化

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat gray;
  cvtColor(img, gray, COLOR_BGR2GRAY);
  imshow("灰度图像", gray);
  Mat dst;
  equalizeHist(gray, dst);//只支持单通道灰度图像
  imshow("直方图均衡化演示", dst);

二十五、直方图均衡化

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat gray;
  cvtColor(img, gray, COLOR_BGR2GRAY);
  imshow("灰度图像", gray);
  Mat dst;
  equalizeHist(gray, dst);//只支持单通道灰度图像
  imshow("直方图均衡化演示", dst);

二十六、图像卷积

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat dst;
  blur(img, dst, Size(15, 15), Point(-1, -1));
  imshow("图像卷积", dst);

二十七、图像卷积

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat dst;
  blur(img, dst, Size(15, 15), Point(-1, -1));
  imshow("图像卷积", dst);

二十八、高斯模糊

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat dst;
  GaussianBlur(img, dst, Size(0, 0), 15);//ksize正数奇数
  imshow("高斯模糊", dst);

二十九、高斯双边模糊

QString appPath = QCoreApplication::applicationDirPath();
  imagePath = appPath + "/A.jpg";
  img = cv::imread(imagePath.toStdString());
  if (img.empty())
    return;
  Mat dst;
  bilateralFilter(img, dst, 0, 100, 10);
  imshow("双边模糊", dst);

三十、人脸识别

std::string root_dir = "D:/opencv/sources/samples/dnn/face_detector/";
  dnn::Net net = dnn::readNetFromTensorflow(root_dir + "opencv_face_detector_uint8.pb", root_dir + "opencv_face_detector.pbtxt");
  //VideoCapture capture("D:/code/opencv_tutorial_data/images/example_dsh.mp4");
  VideoCapture capture(0, CAP_DSHOW);
  Mat frame;
  while (true) {
    capture.read(frame);
    if (frame.empty()) {
      break;
    }
    Mat blob = dnn::blobFromImage(frame, 1.0, Size(300, 300), Scalar(104, 177, 123), false, false);
    net.setInput(blob);// NCHW
    Mat probs = net.forward(); 
    Mat detectionMat(probs.size[2], probs.size[3], CV_32F, probs.ptr<float>());
    // 解析结果
    for (int i = 0; i < detectionMat.rows; i++) {
      float confidence = detectionMat.at<float>(i, 2);
      if (confidence > 0.5) {
        int x1 = static_cast<int>(detectionMat.at<float>(i, 3)*frame.cols);
        int y1 = static_cast<int>(detectionMat.at<float>(i, 4)*frame.rows);
        int x2 = static_cast<int>(detectionMat.at<float>(i, 5)*frame.cols);
        int y2 = static_cast<int>(detectionMat.at<float>(i, 6)*frame.rows);
        Rect box(x1, y1, x2 - x1, y2 - y1);
        rectangle(frame, box, Scalar(0, 0, 255), 2, 8, 0);
      }
    }
    imshow("人脸检测演示", frame);
    int c = waitKey(1);
    if (c == 27) { // 退出
      break;
    }
  }

源码:https://github.com/YouyangHan/openCV_study

相关文章
|
7月前
|
SQL 计算机视觉
OpenCV常用操作demo
OpenCV常用操作demo
|
8月前
|
前端开发 Java Maven
java集成opencv(不踩坑),实现人脸检测小demo(含上传人像图片识别接口),windows,IDEA,Springboot
java集成opencv(不踩坑),实现人脸检测小demo(含上传人像图片识别接口),windows,IDEA,Springboot
1186 0
|
算法 数据可视化 开发工具
Baumer相机BGAPI SDK Demo软件去连接JPEG-650M相机进行采图时,发现图像显示为一条灰色条状图像(C++),联合OpenCV进行图像转换显示
Baumer相机BGAPI SDK Demo软件去连接JPEG-650M相机进行采图时,发现图像显示为一条灰色条状图像(C++),联合OpenCV进行图像转换显示
106 0
|
机器学习/深度学习 Unix TensorFlow
opencv安装实录附十几行C++实现的一个人脸识别demo
opencv安装实录附十几行C++实现的一个人脸识别demo
360 0
opencv安装实录附十几行C++实现的一个人脸识别demo
|
数据库 计算机视觉 Python
总结两种使用OpenCv连接海康相机播放视频画面方法(demo)
总结两种使用OpenCv连接海康相机播放视频画面方法(demo)
601 0
|
计算机视觉 Python
RPi 2B python opencv camera demo example
/************************************************************************************** * RPi 2B python opencv camera demo example * 声明: * 本文主要记录RPi 2B 使用python opencv来获取图片的方式。
919 0
|
3月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
663 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
4月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
58 4
|
4月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制