- 作者简介:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名)
- ❤️觉得文章还不错的话欢迎大家点赞👍➕收藏⭐️➕评论,💬支持博主,记得点个大大的
关注
,持续更新🤞
————————————————-
引言
在JDK1.5之后,Java还提供了Lock同步锁。本文将探索Lock的使用优化
Lock锁简介
基本特点
Lock锁的基本操作通常基于乐观锁实现,尽管在某些情况下(如阻塞时)它也可能采用悲观锁的策略。通过对比图,我们可以清晰地看到两种同步锁的基本特点。
Lock同步锁与Synchronized的比较
在Java中,同步锁机制是确保多线程安全访问共享资源的重要手段。与JVM隐式管理锁的Synchronized相比,Lock同步锁(以下简称Lock锁)提供了更细粒度的控制,通过显式地获取和释放锁,为开发者提供了更大的灵活性。
一、基本特点
Lock锁的基本操作通常基于乐观锁实现,尽管在某些情况下(如阻塞时)它也可能采用悲观锁的策略。通过对比图,我们可以清晰地看到两种同步锁的基本特点。
性能对比
在并发量不高、竞争不激烈的情况下,Synchronized由于分级锁的优化,性能上与Lock锁相近。然而,在高负载、高并发场景下,由于Synchronized可能会升级到重量级锁,其性能稳定性不如Lock锁。通过性能测试,我们可以更直观地了解两者的性能差异。
通过以上数据,我们可以发现:Lock锁的性能相对来说更加稳定。
Lock锁的实现原理
Lock锁是基于Java实现的接口,常见的实现类有ReentrantLock和ReentrantReadWriteLock(RRW)。这些实现类都依赖于AbstractQueuedSynchronizer(AQS)类,AQS内部包含一个基于链表实现的等待队列(CLH队列)和一个用于表示加锁状态的state变量。
获取锁
下面是获取锁的流程图
优化方式
虽然Lock锁的性能稳定,但也并不是所有的场景下都默认使用ReentrantLock独占锁来实现线程同步。
我们知道,对于同一份数据进行读写,如果一个线程在读数据,而另一个线程在写数据,那么读到的数据和最终的数据就会不一致;如果一个线程在写数据,而另一个线程也在写数据,那么线程前后看到的数据也会不一致。这个时候我们可以在读写方法中加入互斥锁,来保证任何时候只能有一个线程进行读或写操作。
在大部分业务场景中,读业务操作要远远大于写业务操作。而在多线程编程中,读操作并不会修改共享资源的数据,如果多个线程仅仅是读取共享资源,那么这种情况下其实没有必要对资源进行加锁。如果使用互斥锁,反倒会影响业务的并发性能,那么在这种场景下,有没有什么办法可以优化下锁的实现方式呢?
1. 读写锁ReentrantReadWriteLock
针对这种读多写少的场景,Java提供了另外一个实现Lock接口的读写锁RRW。我们已知ReentrantLock是一个独占锁,同一时间只允许一个线程访问,而RRW允许多个读线程同时访问,但不允许写线程和读线程、写线程和写线程同时访问。读写锁内部维护了两个锁,一个是用于读操作的ReadLock,一个是用于写操作的WriteLock。
那读写锁又是如何实现锁分离来保证共享资源的原子性呢?
RRW也是基于AQS实现的,它的自定义同步器(继承AQS)需要在同步状态state上维护多个读线程和一个写线程的状态,该状态的设计成为实现读写锁的关键。RRW很好地使用了高低位,来实现一个整型控制两种状态的功能,读写锁将变量切分成了两个部分,高16位表示读,低16位表示写。
获取写锁
一个线程尝试获取写锁时,会先判断同步状态state是否为0。如果state等于0,说明暂时没有其它线程获取锁;如果state不等于0,则说明有其它线程获取了锁。
此时再判断同步状态state的低16位(w)是否为0,如果w为0,则说明其它线程获取了读锁,此时进入CLH队列进行阻塞等待;如果w不为0,则说明其它线程获取了写锁,此时要判断获取了写锁的是不是当前线程,若不是就进入CLH队列进行阻塞等待;若是,就应该判断当前线程获取写锁是否超过了最大次数,若超过,抛异常,反之更新同步状态。
获取读锁
一个线程尝试获取读锁时,同样会先判断同步状态state是否为0。如果state等于0,说明暂时没有其它线程获取锁,此时判断是否需要阻塞,如果需要阻塞,则进入CLH队列进行阻塞等待;如果不需要阻塞,则CAS更新同步状态为读状态。
如果state不等于0,会判断同步状态低16位,如果存在写锁,则获取读锁失败,进入CLH阻塞队列;反之,判断当前线程是否应该被阻塞,如果不应该阻塞则尝试CAS同步状态,获取成功更新同步锁为读状态。
举例说明
下面我们通过一个求平方的例子,来感受下RRW的实现,代码如下:
public class TestRTTLock { private double x, y; private ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); // 读锁 private Lock readLock = lock.readLock(); // 写锁 private Lock writeLock = lock.writeLock(); public double read() { //获取读锁 readLock.lock(); try { return Math.sqrt(x * x + y * y); } finally { //释放读锁 readLock.unlock(); } } public void move(double deltaX, double deltaY) { //获取写锁 writeLock.lock(); try { x += deltaX; y += deltaY; } finally { //释放写锁 writeLock.unlock(); } } }
2.读写锁再优化之StampedLock
RRW被很好地应用在了读大于写的并发场景中,然而RRW在性能上还有可提升的空间。在读取很多、写入很少的情况下,RRW会使写入线程遭遇饥饿(Starvation)问题,也就是说写入线程会因迟迟无法竞争到锁而一直处于等待状态。
在JDK1.8中,Java提供了StampedLock类解决了这个问题。StampedLock不是基于AQS实现的,但实现的原理和AQS是一样的,都是基于队列和锁状态实现的。与RRW不一样的是,StampedLock控制锁有三种模式: 写、悲观读以及乐观读,并且StampedLock在获取锁时会返回一个票据stamp,获取的stamp除了在释放锁时需要校验,在乐观读模式下,stamp还会作为读取共享资源后的二次校验,后面我会讲解stamp的工作原理。
我们先通过一个官方的例子来了解下StampedLock是如何使用的,代码如下:
public class Point { private double x, y; private final StampedLock s1 = new StampedLock(); void move(double deltaX, double deltaY) { //获取写锁 long stamp = s1.writeLock(); try { x += deltaX; y += deltaY; } finally { //释放写锁 s1.unlockWrite(stamp); } } double distanceFormOrigin() { //乐观读操作 long stamp = s1.tryOptimisticRead(); //拷贝变量 double currentX = x, currentY = y; //判断读期间是否有写操作 if (!s1.validate(stamp)) { //升级为悲观读 stamp = s1.readLock(); try { currentX = x; currentY = y; } finally { s1.unlockRead(stamp); } } return Math.sqrt(currentX * currentX + currentY * currentY); } }
我们可以发现:一个写线程获取写锁的过程中,首先是通过WriteLock获取一个票据stamp,WriteLock是一个独占锁,同时只有一个线程可以获取该锁,当一个线程获取该锁后,其它请求的线程必须等待,当没有线程持有读锁或者写锁的时候才可以获取到该锁。请求该锁成功后会返回一个stamp票据变量,用来表示该锁的版本,当释放该锁的时候,需要unlockWrite并传递参数stamp。
接下来就是一个读线程获取锁的过程。首先线程会通过乐观锁tryOptimisticRead操作获取票据stamp ,如果当前没有线程持有写锁,则返回一个非0的stamp版本信息。线程获取该stamp后,将会拷贝一份共享资源到方法栈,在这之前具体的操作都是基于方法栈的拷贝数据。
之后方法还需要调用validate,验证之前调用tryOptimisticRead返回的stamp在当前是否有其它线程持有了写锁,如果是,那么validate会返回0,升级为悲观锁;否则就可以使用该stamp版本的锁对数据进行操作。
相比于RRW,StampedLock获取读锁只是使用与或操作进行检验,不涉及CAS操作,即使第一次乐观锁获取失败,也会马上升级至悲观锁,这样就可以避免一直进行CAS操作带来的CPU占用性能的问题,因此StampedLock的效率更高。
总结
总结:
在并发编程中,Synchronized
和Lock
等同步机制在存在锁竞争时会导致线程阻塞和频繁切换,影响性能。为了优化性能,关键在于降低锁竞争。
Synchronized
可通过减小锁粒度和减少锁占用时间来降低竞争。而Lock
(如ReentrantReadWriteLock
和StampedLock
)通过读写锁分离和多种锁模式,进一步降低锁竞争,提高并发性能。
开发者应根据应用场景选择合适的锁机制和策略来优化性能。
欢迎一键三连(关注+点赞+收藏),技术的路上一起加油!!!代码改变世界
- 关于我:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名),回复暗号,更能获取学习秘籍和书籍等
- —⬇️欢迎关注下面的公众号:
进朱者赤
,认识不一样的技术人。⬇️—