盘点12个Python数据可视化库,通吃任何领域

简介: 盘点12个Python数据可视化库,通吃任何领域


Seaborn利用Matplotlib的强大功能,只用几行代码就能创建出漂亮的图表。它们的关键区别在于,Seaborn的默认款式和调色板设计更加美观和现代。由于Seaborn是在Matplotlib基础上构建的,因此用户还需要了解Matplotlib以便调整Seaborn的默认值。

Seaborn同Matplotlib一样,也是Python进行数据可视化分析的重要第三方包。

Seaborn在Matplotlib的基础上进行了更高级的API封装,使用户绘图更加容易,所绘图形更加漂亮。Seaborn是基于Matplotlib的一个模块,专用于统计可视化,可以和Pandas进行无缝连接,使可视化的初学者更容易上手。

相对于Matplotlib,Seaborn语法更简洁,两者的关系类似于Numpy和Pandas的关系。但是需要注意的是,应该把Seaborn视为Matplotlib的补充,而不是替代物。

Seaborn库旨在以数据可视化为中心来挖掘与理解数据,它提供的面向数据集制图函数主要是对行列索引和数组的操作,包含对整个数据集进行内部的语义映射与统计整合,以此生成信息丰富的图表。

3Pyecharts

Pyecharts是我国开发人员开发的,相比较Matplotlib、Seaborn等可视化库,Pyecharts十分符合国内用户的使用习惯。

Pyecharts的目的是实现Echarts与Python的对接,以便在Python中使用Echarts生成图表。

Echarts是百度开源的一个数据可视化JavaScript库,生成的图的可视化效果非常好,其凭借良好的交互性,精巧的图表设计,得到了众多开发者的认可

4Missingno

处理缺失的数据是一件让人痛苦的事,Missingno通过使用视觉摘要来快速评估数据集的完整性,而不是通过大篇幅的表格。它可以根据热力图或树状图的完成度或点的相关度对数据进行过滤和排序。

交互式可视化库

数据可视化可以是静态的也可以是交互的,交互式的数据可视化是指人们使用计算机和移动设备深入图表和图形的具体细节,然后用交互的方式改变他们看到的数据。Python交互式可视化库主要包括如下几个。

1Bokeh

Bokeh基于JavaScript实现交互式可视化,它是原生Python语法,它可以在Web浏览器中实现美观的视觉效果。

它的优势在于能够创建交互式的网站图,可以很容易地将数据输出为JSON对象、HTML文档或交互式Web应用程序。Bokeh还支持流媒体和实时数据。

但是它也有明显的缺点:一是版本时常更新,最重要的是有时语法不向下兼容,这对于开发者来说是噩梦;二是语法晦涩,与Matplotlib相比,可以说是有过之而无不及。

2HoloViews

HoloViews是一个开源的Python库,旨在使数据分析和可视化更加简便,可以用非常少的代码行完成数据分析和可视化。

除了默认的Matplotlib后端,它还添加了一个Bokeh后端。结合Bokeh提供的交互式小部件,可以使用HTML5和WebGL快速生成交互式视图,以及进行高维数据的可视化探索。

3Plotly

Plotly是一个数据可视化的在线平台,与Bokeh一样,Plotly的强项在于制作交互式视图,但它提供了一些在大多数库中没有的图表,如等高线图、树状图和3D图表。可以在线绘制条形图、散点图、饼图、直方图等多种图形,可以画出很多媲美Tableau的高质量图。

Plotly支持在线编辑图形,支持Python、JavaScript、MATLAB和R等多种语言的API。Plotly生成的所有图表实际上都是由JavaScript产生的,无论是在浏览器还是在Jupyter中,所有的可视化、交互都是基于plotly.js的,它是一个高级的声明性图表库,提供了20多种图表类型,包含3D图表、统计图和SVG地图等。

4pygal

与Bokeh和Plotly一样,pygal提供了可以嵌入Web浏览器的交互式视图。区别在于,它能够将图表输出为SVG格式。如果用户使用较小的数据集,则输出位SVG格式的图像就可以了,但是如果用户制作的图表包含数十万个数据点,那么它们就会很难被渲染并变得反应迟钝。

Pygal绘制线图的方法很简单,可以将图表渲染为一个SVG文件,用户使用浏览器打开SVG文件就可以查看生成的图表。

5plotnine

plotnine是Python中图形语法的一种实现,它基于ggplot2包,语法绘图功能强大,可以轻松将数据映射到构成图的可视对象,然后创建自定义的图形。plotnine提供各种不同的可视化视图,易于适应定制化输出,安装十分简单,用户可以通过pip install plotnine命令直接安装。

plotnine的优点为代码简洁,易学;绘制出的图流畅大方;不需要很多的代码就可以绘制出很不错的图。在使用plotnine绘图之前,首先需要理解绘图的基本概念。

6Altair

Altair是一个专为Python编写,它可以让数据科学家更多地关注数据本身和其内在的联系。

因为是基于Vega-Lite(交互式图形语法)的声明性统计可视化库,Altair API具有简单、友好、一致等特点。

声明意味着用户只需要提供数据列与编码通道之间的链接,例如,x轴、y轴、颜色等,其余的绘图细节它会自动处理。声明使Altair变得简单、友好和一致,用户使用Altair可以轻松设计出有效且美观的可视化代码。

7ggplot

ggplot是基于R语言的ggplot2包和Python的绘图系统。ggplot的运行方式与Matplotlib不同,它允许用户对组件进行分层以创建完整的绘图。例如,用户可以从轴开始画,然后添加点,接着添加线、趋势线等。虽然图形语法被认为是绘图的“直观”方法,但经验丰富的Matplotlib用户可能需要时间来适应这个新的方式。

8Gleam

Gleam的灵感来自R语言的Shiny包。它允许用户仅使用Python脚本就可将分析结果转换为交互式Web应用程序,因此用户不必了解任何其他语言,如HTML、CSS或JavaScript。Gleam适用于任何Python数据可视化库。在创建绘图后,用户可以在它的上面添加字段,以便对数据进行筛选和排序。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析学习等教程。带你从零基础系统性的学好Python!

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划


相关文章
|
1月前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
67 0
|
21天前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
1月前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
75 19
|
26天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
29天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
59 4
|
29天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
33 2
|
1月前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
58 7
|
1月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
40 3
|
27天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南