15.求函数:sin(x)=x/1! - x3/3! + x5/5! -x7/7! +…,最后一项精度不低于0.000001

简介: 15.求函数:sin(x)=x/1! - x3/3! + x5/5! -x7/7! +…,最后一项精度不低于0.000001
#include <iostream>
using namespace std;
 
int main() 
{ 
    double x,sinx=0.0,jbf,j=1.0; 
    cin>>x; 
    jbf=x; 
    int k=1,l=1; 
    double n=1; 
    while(j>=1e-6) 
    { 
        j=jbf/n; 
        sinx=sinx+k*j; 
        jbf=jbf*x*x; 
        k=-k; 
        n=n*(l+1)*(l+2); 
        l+=2; 
    } 
    cout<<"sin(x) = "<<sinx<<endl; 
    return 0;
}
目录
相关文章
|
9月前
|
数据挖掘 Python
【视频】随机波动率SV模型原理和Python对标普SP500股票指数预测|数据分享
【视频】随机波动率SV模型原理和Python对标普SP500股票指数预测|数据分享
|
9月前
|
算法 数据挖掘
WinBUGS对多元随机波动率SV模型:贝叶斯估计与模型比较
WinBUGS对多元随机波动率SV模型:贝叶斯估计与模型比较
|
Python
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
1176 0
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
|
9月前
|
算法 Linux
R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数
R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数
|
9月前
|
数据可视化 C语言
使用R语言随机波动模型SV处理时间序列中的随机波动率
使用R语言随机波动模型SV处理时间序列中的随机波动率
|
9月前
|
Python
Python随机波动率(SV)模型对标普500指数时间序列波动性预测
Python随机波动率(SV)模型对标普500指数时间序列波动性预测
|
9月前
R语言中固定与随机效应Meta分析 - 效率和置信区间覆盖
R语言中固定与随机效应Meta分析 - 效率和置信区间覆盖
|
9月前
R语言量化:合成波动率指数移动平均策略分析标准普尔500波动率指数(VIX)
R语言量化:合成波动率指数移动平均策略分析标准普尔500波动率指数(VIX)
|
数据可视化 计算机视觉
深入了解平均精度(mAP):通过精确率-召回率曲线评估目标检测性能
平均精度(Average Precision,mAP)是一种常用的用于评估目标检测模型性能的指标。在目标检测任务中,模型需要识别图像中的不同目标,并返回它们的边界框(bounding box)和类别。mAP用于综合考虑模型在不同类别上的准确度和召回率。
1089 0
|
编解码 测试技术
AV1编码时间下降,接近使用水平
AV1最初发布时,编码速度缓慢,时间过长,严重影响编码器的可用性。随着不断的优化,其编码时间已经有很大改进,几乎可以使用。
1398 0
AV1编码时间下降,接近使用水平