实时计算 Flink版产品使用合集之如何配置让CDC作业不去同步无主键的表

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC设置哪个参数可以屏蔽掉无PK表的异常,不要让作业停止?


Flink CDC设置哪个参数可以屏蔽掉无PK表的异常,不要让作业停止?


参考回答:

在Flink CDC中,如果希望屏蔽无主键表的异常并保持作业持续运行,可以尝试调整参数"ignore-not-found-pk-tables"。将其设置为"true",这样在处理无主键表时,作业将不会因为找不到主键而停止。这个参数能够允许Flink CDC在遇到这种情况时忽略错误并继续执行其他任务。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572271


问题二:Flink CDC中SQLServer多库同名表写入到一张sink表中,有什么思路吗?


Flink CDC中SQLServer多库同名表写入到一张sink表中,我有个思路是创建n个source,最后把n个source union all到一起insert到sink表中,但是问题1️:这样会创建多个连接,问题2️:后续SQLServer增删改数据时,sink端无法同步删除,只能同步增改。大佬有什么思路吗


参考回答:

等3.0 有整库同步


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572267


问题三:Flink CDC 1.17.1 支持jdk8版本吗?


Flink CDC 1.17.1 支持jdk8版本吗?


参考回答:

支持


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567380


问题四:Flink CDC有个场景,我有两个不同数据类型的topic:a,b,这个有人遇到过吗?


Flink CDC有个场景,我有两个不同数据类型的topic:a,b,他们分别又有相同数据类型的后缀为_grey的灰度用的topic: a_grey,b_grey

a_grey和b_grey分别是用来对应a,b进行灰度切换的,灰度流程是先灰度部分数据,后面全量切换,a -> a_grey, b -> b_grey,下一次灰度就是b_grey -> b, a_grey -> a。

我会用datastream api,去拉取a,a_grey进行union,withTimestampAssigner,使用事件时间戳

用datastream api,去拉取b,b_grey进行unionr,使用事件时间戳

然后去将union之后的stream转换为table,a_union_table和b_union_table 然后用flink sql进行left interval join,a_union_table left interval join b_union_table,获取数据再转为stream,用stream api进行mapper操作,最后写入数据库。

a,a_grey,b,b_grey都有8个分区,

a和a_grey会发送到所有的8个分区有数据

但是b,b_grey,只会发送到里面四个分区,其他四个分区没有数据

现在的问题是每次灰度全量切换完成之后,flink的水印就会推进不了,停留在切换的kafka数据时间戳附近,推进不了,请问下,这个有人遇到过吗?是什么原因,可以怎么解决?flink 1.17.1和1.14.5都不行

我尝试过withIdleness,或者不用withTimestampAssigner,但是在下次切换的时候又出这种问题了?


参考回答:

可能是因为Kafka分区不均衡导致的。由于b和b_grey只向4个分区发送数据,而a和a_grey则向所有8个分区发送数据,因此当您切换到b和b_grey时,Flink可能需要更长时间来处理所有分区的数据,从而导致水印推进困难。

为了缓解这个问题,您可以考虑以下几种方法:

  • 均衡分配数据:确保每个Kafka分区都接收到足够多的数据,这样Flink就可以同时处理多个分区,从而更快地推进水印。
  • 提高吞吐量:通过增加任务并发度或优化代码等方式,提高Flink处理数据的能力,使水印能够快速推进。
  • 调整水印策略:在某些情况下,您可以尝试调整水印策略,例如降低水印阈值,允许更多的乱序数据进入窗口,或者启用懒评估模式等。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572260


问题五:Flink CDC有没有办法或者配置让CDC作业不去同步这种无主键的表?


Flink CDC有没有办法或者配置让CDC作业不去同步这种无主键的表?


参考回答:

在Flink CDC中,确实存在一种配置可以使得CDC作业不去同步无主键的表。具体来说,您可以使用scan.incremental.snapshot.chunk.key-column参数进行配置。这个参数允许您指定一个或多个列作为块键列,用于划分表的快照。

此外,对于某些无主键的表,比如Oracle的表,Flink CDC能够通过监听redo log(相当于binlog)来获取数据变更内容。Oracle的redo log记录了所有DML操作,包括对无主键表的变更,因此Flink CDC在这种情况下并不需要依赖表的主键。同样,MySQL CDC连接器在2.4版本也支持读取无主键表,同时支持新增表时原有实时同步链路不断流。

Flink CDC提供了一些灵活的配置选项和策略,使得它能够适应各种不同的数据源和业务场景。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/572257

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1239 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
4天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
34 16
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
157 56
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
90 9
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
84 1
|
2月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
2月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
52 0
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
5月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
870 7
阿里云实时计算Flink在多行业的应用和实践

相关产品

  • 实时计算 Flink版