内存映射实现父子进程通信

简介: 内存映射实现父子进程通信

创建内存映射区:

void *mmap(void *addr ,size_t length,int prot,int flags,int fd,off_t offset);

参数:

  • addr  指定映射区的首地址。通常NULL,表示让系统自动分配
  • length  共享内存映射区的长度
  • prot  共享内存的读写属性  PROT_READ  PROT_WRITE
  • flags  标注共享内存的共享属性  MAP_SHARED  MAP_PRIVATE
  • fd  用于创建共享内存映射区的那个文件的文件描述符
  • offset 默认为0 表示映射文件全部  偏移位置 需是4k的整数倍

返回值

  • 成功:映射区的首地址
  • 失败:MAP_FAILED(void*(-1)),error

int munmap(void *addr,size_t length)    释放映射区

  • addr  mmap的返回值
  • length 大小

实验结果:

*p是共享内存  两者一致

那为什么全局变量var的值不一样呢?

因为两个进程所占的内存相互独立,所以子进程只改变了自己内存中的var值

读时共享,写时复制  读的时候读取共享内存,写的时候复制共享内存

此时flags的状态是MAP_PRIVATE,所以内存对互相都是私有

子进程改变*p,父进程不会受影响

var同上

实现任意进程间通信:内存映射实现无血缘关系进程间通信-CSDN博客

代码:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/wait.h>
 
int var=100;
 
int main(){
    int *p;
    pid_t pid;
    int fd;
    fd=open("temp",O_RDWR|O_CREAT|O_TRUNC,0664);
    if(fd<0){
        perror("open error");
        exit(1);
    }
        unlink("temp");
        ftruncate(fd,4);
        //p=(int *)mmap(NULL,4,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
        p=(int *)mmap(NULL,4,PROT_READ|PROT_WRITE,MAP_PRIVATE,fd,0);
        if(p==MAP_FAILED){  //注意不是p==NULL
           perror("mmap error");
           exit(1);
        }
        close(fd);    //映射区建立完毕,即可关闭文件
 
        pid=fork();    //  创建子进程
        if(pid==0){
          *p=2000;     //写共享内存
          var=1000;
          printf("child,*p=%d,var=%d\n",*p,var);
        }
        else{
          sleep(1);
          printf("parent,*p=%d,var=%d\n",*p,var);
          wait(NULL);
 
          int ret=munmap(p,4);  //释放映射区
          if(ret==-1){
            perror("munmap error");
            exit(1);
          }
        }
        return 0;
}
相关文章
|
3月前
|
消息中间件 存储 网络协议
从零开始掌握进程间通信:管道、信号、消息队列、共享内存大揭秘
本文详细介绍了进程间通信(IPC)的六种主要方式:管道、信号、消息队列、共享内存、信号量和套接字。每种方式都有其特点和适用场景,如管道适用于父子进程间的通信,消息队列能传递结构化数据,共享内存提供高速数据交换,信号量用于同步控制,套接字支持跨网络通信。通过对比和分析,帮助读者理解并选择合适的IPC机制,以提高系统性能和可靠性。
401 14
|
2月前
|
消息中间件 Linux
Linux中的System V通信标准--共享内存、消息队列以及信号量
希望本文能帮助您更好地理解和应用System V IPC机制,构建高效的Linux应用程序。
149 48
|
2月前
|
消息中间件 Linux C++
c++ linux通过实现独立进程之间的通信和传递字符串 demo
的进程间通信机制,适用于父子进程之间的数据传输。希望本文能帮助您更好地理解和应用Linux管道,提升开发效率。 在实际开发中,除了管道,还可以根据具体需求选择消息队列、共享内存、套接字等其他进程间通信方
78 16
|
4月前
|
运维 监控 Ubuntu
【运维】如何在Ubuntu中设置一个内存守护进程来确保内存不会溢出
通过设置内存守护进程,可以有效监控和管理系统内存使用情况,防止内存溢出带来的系统崩溃和服务中断。本文介绍了如何在Ubuntu中编写和配置内存守护脚本,并将其设置为systemd服务。通过这种方式,可以在内存使用超过设定阈值时自动采取措施,确保系统稳定运行。
155 4
|
4月前
|
C语言 开发者 内存技术
探索操作系统核心:从进程管理到内存分配
本文将深入探讨操作系统的两大核心功能——进程管理和内存分配。通过直观的代码示例,我们将了解如何在操作系统中实现这些基本功能,以及它们如何影响系统性能和稳定性。文章旨在为读者提供一个清晰的操作系统内部工作机制视角,同时强调理解和掌握这些概念对于任何软件开发人员的重要性。
|
4月前
|
Linux 调度 C语言
深入理解操作系统:从进程管理到内存优化
本文旨在为读者提供一次深入浅出的操作系统之旅,从进程管理的基本概念出发,逐步探索到内存管理的高级技巧。我们将通过实际代码示例,揭示操作系统如何高效地调度和优化资源,确保系统稳定运行。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇了解操作系统深层工作原理的大门。
|
5月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
125 6
|
5月前
|
算法 调度 开发者
深入理解操作系统:从进程管理到内存分配
本文旨在为读者提供一个深入浅出的操作系统知识之旅,从进程管理的基础概念出发,探索内存分配的策略与技巧。我们将通过实际代码示例,揭示操作系统背后的逻辑与奥秘,帮助读者构建起对操作系统工作原理的直观理解。文章不仅涵盖理论知识,还提供实践操作的指导,使读者能够将抽象的概念转化为具体的技能。无论你是初学者还是有一定基础的开发者,都能在这篇文章中找到有价值的信息和启发。
|
5月前
|
算法 调度 C++
深入理解操作系统:从进程管理到内存分配
【10月更文挑战第42天】本文将带你进入操作系统的神秘世界,探索其核心概念和关键技术。我们将从进程管理开始,了解操作系统如何协调和管理多个程序的运行;然后,我们将深入研究内存分配,看看操作系统如何有效地分配和管理计算机的内存资源。通过这篇文章,你将获得对操作系统工作原理的深入理解,并学会如何编写高效的代码来利用这些原理。
|
23天前
|
Linux 数据库 Perl
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。

热门文章

最新文章

相关实验场景

更多