大模型都在用的:旋转位置编码大模型都在用的:旋转位置编码

简介: 大模型都在用的:旋转位置编码

写在前面

       这篇文章提到了绝对位置编码和相对位置编码,但是他们都有局限性,比如绝对位置编码不能直接表征token的相对位置关系;相对位置编码过于复杂,影响效率。于是诞生了一种用绝对位置编码的方式实现相对位置编码的编码方式——旋转位置编码(Rotary Position Embedding, RoPE),兼顾效率和相对位置关系。


       RoPE的核心思想是通过旋转的方式将位置信息编码到每个维度,从而使得模型能够捕捉到序列中元素的相对位置信息。现在已经在很多大模型证明了其有效性,比如ChatGLM、LLaMA等。

一、RoPE的优点

1.真正的旋转位置编码

       Transformer的原版位置编码也使用了三角函数,但它生成的是每个位置的绝对编码,三角函数的主要用途是生成具有可区分性的周期性模式,也没有应用旋转变换的概念,因此属于绝对位置编码。同时原版的编码使用加法,在多层传递后导致位置信息的稀释,如下图 (没想到这张图也有被当做反面典型的时候吧 ):


       RoPE不是简单的加法,而是通过复数乘法实现旋转变换,这种旋转是将位置信息融入到token表示中的关键机制。RoPE在实现过程中通过乘法操作融入位置信息,与模型中的Q和K深度融合,将旋转操作真正植入Attention机制内部,强化了位置编码信息的作用


2.更好的相对位置信息编码

       注意力机制通过计算Embedding的内积来确定它们之间的关系强度。

       使用RoPE时,两个位置的编码通过旋转变换后的内积,自然地包含了它们之间的相对位置信息。这是因为旋转操作保持了内积的性质,使得内积计算不仅反映了token的内容相似性,还反映了它们的位置关系。

3.更适用于多维输入

       这点很有意思,传统的Transformer位置编码主要针对一维序列,如文本序列。然而,在某些任务中,输入可能是二维或更高维的数据,如图像或视频数据。旋转位置编码可以更灵活地应用于多维输入数据,通过对不同维度的位置信息进行编码,使得模型能够更好地理解多维数据中的位置关系。

4. 更善于处理长序列

       RoPE可以减少位置信息的损失。在深层网络中,RoPE通过乘法操作融入位置信息,乘法操作有助于在深层网络中保持位置信息的完整性。在处理一个长文本时,RoPE通过在每一层的自注意力计算中使用旋转变换,确保了位置信息能够被有效保留和利用,即使是在模型的较深层次。

二、公式

       既然旋转的位置编码有这么多优点,那怎么实现位置编码的旋转呢,其实网上有很多介绍的文章。大概意思就是复数可以通过乘以e的幂来旋转角度,其中幂就是角度,再结合欧拉公式推出三角函数的表达,大致流程如下。

image.png

image.png

三、代码实现

       我们以ChatGLM的代码为例,展示一下RoPE的使用,以下代码都在modeling_chatglm.py文件中,一条训练数据:

{"context": "你好", "target": "你好,我是大白话"}

1.字符串转换成token_ids

[ 5,  74874, 130001, 130004,  5,  74874, 6,  65806,  63850, 95351, 130005]

2.计算position_ids

       根据上面的token_ids计算出position_ids:

[[0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2],
 [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8]]

      解释一下position_ids:第一行表示序列中每个元素的全局位置,第一个“2”表明context结束了,target要开始了,后面所有的2都是target部分;第二行则细化到更具体的局部位置,从1开始表征整个target的内容,这样用两个维度的编码很优雅的体现了context和target,这种层次化处理对于理解上下文非常重要。

       代码如下:

    def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
        """
        根据token_ids生成position_ids
        :param input_ids: 这里是[[ 5, 74874, 130001, 130004, 5, 74874, 6, 65806, 63850, 95351, 130005]]
        :param mask_positions: 2 输出的第1维mask掉几位,即这一位及其前面都是0,后面是1,2...
        :param device:
        :param use_gmasks:
        :return: [[0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2],
                    [0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8]]
        """
        batch_size, seq_length = input_ids.shape
        if use_gmasks is None:
            use_gmasks = [False] * batch_size
        context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
        if self.position_encoding_2d:
            # 会走这一分支
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
            for i, context_length in enumerate(context_lengths):
                position_ids[i, context_length:] = mask_positions[i]
            block_position_ids = [torch.cat((
                torch.zeros(context_length, dtype=torch.long, device=device),
                torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
            )) for context_length in context_lengths]
            block_position_ids = torch.stack(block_position_ids, dim=0)
            position_ids = torch.stack((position_ids, block_position_ids), dim=1)
        else:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
            for i, context_length in enumerate(context_lengths):
                if not use_gmasks[i]:
                    position_ids[i, context_length:] = mask_positions[i]
 
        return position_ids

3.角度序列Embedding

       接下来,将position_ids转换成角度序列Embedding,下表中每个格的公式为

image.png


m | i 0 31 0 31
0 0/(10000^(2*0/64)) ... 0/(10000^(2*31/64)) 0/(10000^(2*0/64)) ... 0/(10000^(2*31/64))
1 1/(10000^(2*0/64)) 1/(10000^(2*31/64)) 1/(10000^(2*0/64)) 1/(10000^(2*31/64))
2 2/(10000^(2*0/64)) ... 2/(10000^(2*31/64)) 2/(10000^(2*0/64)) ... 2/(10000^(2*31/64))
... ...

image.png

class RotaryEmbedding(torch.nn.Module):
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
                              error_msgs):
        pass
 
    def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
        """
        根据position_ids计算旋转角度的Embedding
        :param dim: 这里hidden_size // (num_attention_heads * 2)=46,其中hidden_size=4096 num_attention_heads=32
        :param base:
        :param precision:
        :param learnable:
        """
        super().__init__()
        # 初始化“频率”,可以理解为position_id每增加1,增加的角度,是Embedding形式的。
        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        inv_freq = inv_freq.half()
        self.learnable = learnable
        if learnable:
            self.inv_freq = torch.nn.Parameter(inv_freq)
            self.max_seq_len_cached = None
        else:
            self.register_buffer('inv_freq', inv_freq)
            self.max_seq_len_cached = None
            self.cos_cached = None
            self.sin_cached = None
        self.precision = precision
 
    def forward(self, x, seq_dim=1, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]
        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
            self.max_seq_len_cached = None if self.learnable else seq_len
            # 1.对position_ids去重并正序排列得到t,如:[[0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]] --> t=[[0, 1, 2]]
            t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
            # 2.t与初始化好的“频率”做外积,得到每个position_id的角度,是Embedding
            freqs = torch.einsum('i,j->ij', t, self.inv_freq)
            # 3.每个Embedding重复叠加一次
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            if self.precision == torch.bfloat16:
                emb = emb.float()
 
            # 4.算cos和sin,并增加维度
            cos_cached = emb.cos()[:, None, :]
            sin_cached = emb.sin()[:, None, :]
            if self.precision == torch.bfloat16:
                cos_cached = cos_cached.bfloat16()
                sin_cached = sin_cached.bfloat16()
            if self.learnable:
                return cos_cached, sin_cached
            self.cos_cached, self.sin_cached = cos_cached, sin_cached
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
 
 
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
    # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
    # 类似于查表,根据每个position_id获取相应的Embedding
    cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
        F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
    ......
 

4.截取拼接Q和K

      这一步对Q或者K做截断,并将第二段取反拼在第一段的前面,拼接成公式第二项的q部分。

上述3、4流程示意图:

代码如下:

def rotate_half(x):
    x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=x1.ndim - 1)  

5.旋转位置编码融合

image.png

5bc44ad7e0134068981c0ddcc969bc3c.png


代码如下:

def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
    # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
    # 类似于查表,根据每个position_id获取相应的Embedding
    cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
        F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
    # 执行旋转位置编码与QK的融合
    q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
    return q, k
 
 
# 整体流程如下
# 1.拆分出Q1、Q2、K1、K2
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
# 2.计算旋转Embedding
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
                position_ids[:, 1, :].transpose(0, 1).contiguous()
# 3.旋转位置编码融合
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
# 4.将拆分出的Q1、Q2、K1、K2合并成新的Q、K
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))

   位置编码对于Transformer的重要性毋庸置疑,旋转位置编码也确实解决了一些问题。最有意思的就是它是一个二维编码,将旋转信息通过乘法操作融入Attention机制内部,强化了位置编码信息,现在已经有很多开源大模型都使用了旋转位置编码,可见其效果不俗。

     旋转位置编码就介绍到这里,关注不迷路(#^.^#)

相关文章
|
6月前
|
机器学习/深度学习 缓存 人工智能
大语言模型中常用的旋转位置编码RoPE详解:为什么它比绝对或相对位置编码更好?
Transformer的基石自2017年后历经变革,2022年RoPE引领NLP新方向,现已被顶级模型如Llama、Llama2等采纳。RoPE融合绝对与相对位置编码优点,解决传统方法的序列长度限制和相对位置表示问题。它通过旋转矩阵对词向量应用角度与位置成正比的旋转,保持向量稳定,保留相对位置信息,适用于长序列处理,提升了模型效率和性能。RoPE的引入开启了Transformer的新篇章,推动了NLP的进展。[[1](https://avoid.overfit.cn/post/9e0d8e7687a94d1ead9aeea65bb2a129)]
956 0
|
5月前
|
计算机视觉
图像处理之给定任意四点不规则放缩
图像处理之给定任意四点不规则放缩
30 3
|
4月前
|
文字识别
文本,文字识别,PaddleOCR,如何删除,PaddleOCR详解,检测,方向分类器,识别,检测的意思是检查字符的位置,查像素坐标,方向分类器,能够实现180度的图像,字符识别是把识别字符
文本,文字识别,PaddleOCR,如何删除,PaddleOCR详解,检测,方向分类器,识别,检测的意思是检查字符的位置,查像素坐标,方向分类器,能够实现180度的图像,字符识别是把识别字符
|
5月前
|
存储 机器学习/深度学习 算法
python 五种算法转置后翻转、层次旋转、递归分块、一次性旋转、环状替换 实现旋转图像【力扣题48】
python 五种算法转置后翻转、层次旋转、递归分块、一次性旋转、环状替换 实现旋转图像【力扣题48】
|
6月前
关于RoPE旋转位置编码的理解
关于RoPE旋转位置编码的理解
108 1
|
定位技术
任意一张图片的CGCS2000坐标配准
任意一张图片的CGCS2000坐标配准
140 0
|
存储 编解码 对象存储
将图像标记器多边形转换为标记的块图像以进行语义分割
将存储在对象中的多边形标签转换为适用于语义分割工作流的标记阻止图像。 可以使用计算机视觉工具箱中的图像标记器应用来标记太大而无法放入内存和多分辨率图像的图像。有关详细信息,请参阅在图像标记器(计算机视觉工具箱)中标记大图像。图像标记器应用不支持对被阻止的图像进行像素标记。您只能使用 ROI 形状(如多边形、矩形和线条)创建标签。此示例演示如何使用函数将多边形 ROI 转换为像素标记的块图像,以进行语义分割工作流。
71 0
将图像标记器多边形转换为标记的块图像以进行语义分割
|
数据可视化 PyTorch 算法框架/工具
数据增强之裁剪、翻转与旋转
数据增强之裁剪、翻转与旋转
145 0
数据增强之裁剪、翻转与旋转
|
计算机视觉
opencv 之图像的边界填充及一些数据计算
opencv 之图像的边界填充及一些数据计算
110 0