深度学习中的大模型「幻觉」问题:解析、原因及未来展望

简介: 深度学习中的大模型「幻觉」问题:解析、原因及未来展望

如何解决大模型的「幻觉」问题?

什么是大模型「幻觉」

     大模型幻觉是指在深度学习领域中,尤其是涉及大型神经网络时,模型展现出在理论上不应具备的性能或能力。这种现象可能导致误导性的结果,表现为在训练数据上过度拟合,使得模型在未曾见过的数据上表现异常优秀。这种过度拟合可能是由于模型的复杂性和训练数据的不足导致的,形成了一种虚假的表现,即幻觉。


     人类会胡言乱语,AI同样也会。简单来说,AI的胡言乱语就是所谓的“机器幻觉”。


     具体来说,AI的幻觉是指大模型生成的内容在表面上看起来合理、有逻辑,甚至可能与真实信息交织在一起,但实际上却存在错误的内容、引用来源或陈述。这些错误的内容以一种有说服力和可信度的方式呈现出来,使人们在没有仔细核查和事实验证的情况下很难分辨出其中的虚假信息。


     AI的幻觉可以分为两类:内在幻觉和外在幻觉。


     内在幻觉是指AI大模型生成的内容与其输入内容之间存在矛盾,即生成的回答与提供的信息不一致。这种错误往往可以通过核对输入内容和生成内容来相对容易地发现和纠正。


     举个例子,我们询问AI大模型“人类在哪年登上月球”?(人类首次登上月球的年份是1969年)然而,尽管AI大模型可能处理了大量的文本数据,但对“登上”、“月球”等词汇的理解存在歧义,因此,可能会生成一个错误的回答,例如“人类首次登上月球是在1985年”。


     相较于内在幻觉,外在幻觉则更为复杂。它是指生成内容的错误性无法从输入内容中直接验证。这种错误通常涉及模型调用了输入内容之外的数据、文本或信息,从而导致生成的内容产生虚假陈述。外在幻觉难以被轻易识别,因为虽然生成的内容可能是虚假的,但模型可以以逻辑连贯、有条理的方式呈现,使人们很难怀疑其真实性。通俗地讲,也就是AI在“编造信息”。


     想象一下,我们在与AI聊天,向其提问:“最近有哪些关于环保的新政策?”AI迅速回答了一系列看起来非常合理和详细的政策,这些政策可能是真实存在的。但其中却有一个政策是完全虚构的,只是被AI编造出来。这个虚假政策可能以一种和其他政策一样有逻辑和说服力的方式被表述,使人们很难在第一时间怀疑其真实性。


     这就是外在幻觉的典型例子。尽管我们可能会相信AI生成的内容是基于输入的,但实际上它可能调用了虚构的数据或信息,从而混入虚假的内容。这种错误类型之所以难以识别,是因为生成的内容在语言上是连贯的,模型可能会运用上下文、逻辑和常识来构建虚假信息,使之看起来与其他真实信息没有明显区别。

造成大模型「幻觉」的原因

     AI的幻觉问题并不是一个新问题,只不过以ChatGPT为代表的AI大模型的火爆让人们开始注意到这个问题。那么,AI的幻觉究竟从何而来?又将带来什么危害?


     以ChatGPT为例,其本质是通过概率最大化不断生成数据,而不是通过逻辑推理来生成回复。

ChatGPT的训练使用了前所未有的庞大数据,并通过深度神经网络、自监督学习、强化学习和提示学习等人工智能模型进行训练。目前披露的ChatGPT的上一代GPT-3模型参数数目高达1750亿。


     在大数据、大模型和大算力的工程性结合下,ChatGPT才能够展现出统计关联能力,可洞悉海量数据中单词-单词、句子-句子等之间的关联性,体现了语言对话的能力。正是因为ChatGPT是以“共生则关联”为标准对模型训练,才会导致虚假关联和东拼西凑的合成结果。许多可笑的错误就是缺乏常识下对数据进行机械式硬匹配所致。


     大模型幻觉的形成源于多个方面。首先,数据分布不一致是一个关键问题。当训练数据与实际应用场景存在显著差异时,模型可能学到了不一致的特征,导致在实际应用中性能下降。其次,大型模型的参数量庞大,容易在训练数据上产生过拟合,即过分适应噪声或非代表性数据,而这并不一定反映真实场景。最后,标签噪声也是一个潜在问题,错误的标签可能导致模型学到错误的知识,进而表现出与实际情况不符的特性。

解决该问题的方法

     要解决大模型幻觉问题,我们可以采取一系列综合的方法。首先,数据清洗与增强是关键一步。通过清理数据集中的噪声和异常值,可以提高训练数据的质量。同时,采用数据增强技术,生成更多多样性的训练样本,有助于提高模型的泛化能力。


     其次,正则化技术是防止过拟合的重要手段。通过引入权重衰减、Dropout等正则化技术,可以减少模型的复杂度,提高其在未见过数据上的表现。


     此外,采用交叉验证来评估模型在不同子集上的性能,有助于防止模型在特定数据集上过度优化,增强了对模型泛化能力的评估。


     最后,利用迁移学习,通过在其他任务上预训练模型,将先验知识引入目标任务,有助于避免在训练过程中过分适应训练数据。

大模型技术的未来

     大模型技术的未来发展充满潜力。随着计算能力的不断提升,大模型在各领域的应用将更加广泛。未来的发展方向可能包括:


     首先,自动化调优将成为一个热门研究方向。随着模型复杂度的提高,更先进的自动化调优技术将能够更有效地寻找最优的超参数配置,减少对手动调参的依赖。


     其次,模型解释性将成为一个关键问题。加强对大模型决策过程的解释性研究,使其更易理解和可信,有助于提高模型在实际应用中的可接受性。


     另外,小样本学习将成为一个挑战。研究在小样本情境下如何更好地训练大模型,以满足实际应用中有限样本的需求,将是一个备受关注的领域。


     最后,建立更完善的大模型生态系统也是未来的发展趋势,包括开发更高效的模型压缩和部署技术,以便在各种硬件和环境上更好地应用大模型。这将有助于大模型更广泛地服务于不同领域和行业。


相关文章
|
2天前
|
机器学习/深度学习 大数据 计算机视觉
构建高效图像分类模型:深度学习在特征提取中的应用
【5月更文挑战第21天】 当前研究探索了深度学习技术在图像分类问题中的应用,并提出了一种新型的卷积神经网络(CNN)架构。该网络通过优化传统CNN结构中的层次和参数配置,显著提升了图像识别的准确性与处理速度。实验结果表明,新提出的模型在多个标准数据集上达到了较高的分类准确率,同时保持了较低的计算成本。本研究不仅为图像分类领域提供了一种高效的解决方案,也为后续深度学习模型的设计提供了有价值的参考。
|
2天前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:迁移学习与预训练模型
使用Python实现深度学习模型:迁移学习与预训练模型
19 0
|
3天前
|
机器学习/深度学习 算法 计算机视觉
构建高效图像分类模型:深度学习在特征提取中的应用
【5月更文挑战第20天】 在计算机视觉领域,图像分类任务是识别和分配数字图像到相应的类别中。随着深度学习技术的兴起,卷积神经网络(CNN)已经成为实现高精度图像分类的核心技术。本文将重点探讨利用深度学习进行图像特征提取的方法,并构建一个高效的图像分类模型。通过对比不同的网络架构、激活函数及其优化算法,我们旨在提供一套系统的方法论来改善模型的性能。
|
3天前
|
机器学习/深度学习 人工智能 算法
食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
食物识别系统采用TensorFlow的ResNet50模型,训练了包含11类食物的数据集,生成高精度H5模型。系统整合Django框架,提供网页平台,用户可上传图片进行食物识别。效果图片展示成功识别各类食物。[查看演示视频、代码及安装指南](https://www.yuque.com/ziwu/yygu3z/yhd6a7vai4o9iuys?singleDoc#)。项目利用深度学习的卷积神经网络(CNN),其局部感受野和权重共享机制适于图像识别,广泛应用于医疗图像分析等领域。示例代码展示了一个使用TensorFlow训练的简单CNN模型,用于MNIST手写数字识别。
18 3
|
6天前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:变分自编码器(VAE)
使用Python实现深度学习模型:变分自编码器(VAE)
15 2
|
6天前
|
存储 并行计算 算法
大模型量化技术解析和应用
眼看人工智能含智能量越来越高含人量越来越低,是否开始担心自己要跟不上这趟高速列车了?内心是否也充满好奇:大模型背后的奥秘是什么?为何如此强大?它能为我所用吗?哪种技术最适合我的需求?
|
7天前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:生成对抗网络(GAN)
使用Python实现深度学习模型:生成对抗网络(GAN)
21 3
|
8天前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:自动编码器(Autoencoder)
使用Python实现深度学习模型:自动编码器(Autoencoder)
11 0
|
8天前
|
机器学习/深度学习 人工智能 算法
构建高效AI系统:深度学习优化技术解析
【5月更文挑战第12天】 随着人工智能技术的飞速发展,深度学习已成为推动创新的核心动力。本文将深入探讨在构建高效AI系统中,如何通过优化算法、调整网络结构及使用新型硬件资源等手段显著提升模型性能。我们将剖析先进的优化策略,如自适应学习率调整、梯度累积技巧以及正则化方法,并讨论其对模型训练稳定性和效率的影响。文中不仅提供理论分析,还结合实例说明如何在实际项目中应用这些优化技术。
|
8天前
|
XML JavaScript 数据格式
Beautiful Soup 库的工作原理基于解析器和 DOM(文档对象模型)树的概念
【5月更文挑战第10天】Beautiful Soup 使用解析器(如 html.parser, lxml, html5lib)解析HTML/XML文档,构建DOM树。它提供方法查询和操作DOM,如find(), find_all()查找元素,get_text(), get()提取信息。还能修改DOM,添加、修改或删除元素,并通过prettify()输出格式化字符串。它是处理网页数据的利器,尤其在处理不规则结构时。
39 2

推荐镜像

更多