用关联规则学习之购物篮分析

简介: 用关联规则学习之购物篮分析

1 目的

  我们的核心目标是利用关联规则学习这一数据挖掘技术,来揭示顾客在购物过程中经常一起购买的食品杂货组合。通过深入了解这些组合,商家可以更好地理解顾客的购物习惯,从而优化商品布局、制定促销策略,并最终提高销售额和客户满意度。

2 数据来源

  该演示数据来源于: 机器学习和智能系统中心

3 案例演示

3.1 数据准备

3.1.1 为交易数据创建一个稀疏矩阵

  运行代码:

library("arules")                                           #加载包
library("Matrix")                                           #加载包
data<- read.transactions('F:\\groceries.csv', sep = ',')    #读取数据 
summary(data)                                               #查看数据信息

  结果展示:

## transactions as itemMatrix in sparse format with
##  9835 rows (elements/itemsets/transactions) and
##  169 columns (items) and a density of 0.02609146 
## 
## most frequent items:
##       whole milk other vegetables       rolls/buns             soda 
##             2513             1903             1809             1715 
##           yogurt          (Other) 
##             1372            34055 
## 
## element (itemset/transaction) length distribution:
## sizes
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
## 2159 1643 1299 1005  855  645  545  438  350  246  182  117   78   77   55   46 
##   17   18   19   20   21   22   23   24   26   27   28   29   32 
##   29   14   14    9   11    4    6    1    1    1    1    3    1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   3.000   4.409   6.000  32.000 
## 
## includes extended item information - examples:
##             labels
## 1 abrasive cleaner
## 2 artif. sweetener
## 3   baby cosmetics

  通过read.transactions()函数为事务型数据创建一个稀疏矩阵,发现共有9835次交易,169种商品类别。稀疏矩阵中,1表示对应商品已被购买,0表示未被购买;同时,密度值为0.02309146,表示商店经营30填内,共有9835×169×0.02309146=43367件商品被购买;我们不仅能看到交易频率最高的集中商品交易数量,也能看到关于交易规模的统计,且每笔交易的平均商品数为4.409件。

  运行代码:

inspect(data[1:5])
itemFrequency(data[,1:3])

  结果展示:

> inspect(data[1:5])
##     items                     
## [1] {citrus fruit,            
##      margarine,               
##      ready soups,             
##      semi-finished bread}     
## [2] {coffee,                  
##      tropical fruit,          
##      yogurt}                  
## [3] {whole milk}              
## [4] {cream cheese,            
##      meat spreads,            
##      pip fruit,               
##      yogurt}                  
## [5] {condensed milk,          
##      long life bakery product,
##      other vegetables,        
##      whole milk}
> itemFrequency(data[,1:3])
## abrasive cleaner artif. sweetener   baby cosmetics 
##     0.0035587189     0.0032536858     0.0006100661

  可以看到前五条交易数据,且能看到前三种商品(商品顺序根据字母排列)出现频率。

3.1.2 可视化商品支持度——商品的频率图

1.商品支持度图

  运行代码:

itemFrequencyPlot(data,support=0.1)

  结果展示:

2.Top20商品支持度频率图

  运行代码:

itemFrequencyPlot(data,topN=20)

  结果展示:

  通过商品频率图可以看到样本数据中支持度至少为10%的有8类商品,同时绘制了支持度排名前20的商品。

3.1.3 可视化交易数据——绘制稀疏矩阵

1.前5条数据稀疏矩阵

  运行代码:

itemFrequencyPlot(data,support=0.1)

  结果展示:

2.前100条数据稀疏矩阵

  运行代码:

image(data[1:100])

  结果展示:

  可以看到前五条和前100条的商品购买稀疏矩阵。少数列的黑点看起来相当稠密,表明该商店部分商品很受欢迎。

3.2 模型的建立及优化

3.2.1 基于数据训练模型

  运行代码:

apriori(data)
datarules<-apriori(data,parameter = list(support=0.006,confidence=0.25,minlen=2))

  结果展示:

> apriori(data)
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.8    0.1    1 none FALSE            TRUE       5     0.1      1
##  maxlen target  ext
##      10  rules TRUE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 983 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 done [0.00s].
## writing ... [0 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
> datarules<-apriori(data,parameter = list(support=0.006,confidence=0.25,minlen=2))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##        0.25    0.1    1 none FALSE            TRUE       5   0.006      2
##  maxlen target  ext
##      10  rules TRUE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 59 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [109 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [463 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].

  首先试图使用默认设置,支持度为0.1,置信度为0.8,发现最终不能得到任何规则,接着尝试设置支持度0.006,置信度0.25,规则最低项数2,发现包含463个关联规则。

3.2.2 评估模型的性能

1.查看所有规则情况

  运行代码:

summary(datarules)

  结果展示:

## set of 463 rules
## 
## rule length distribution (lhs + rhs):sizes
##   2   3   4 
## 150 297  16 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.000   2.000   3.000   2.711   3.000   4.000 
## 
## summary of quality measures:
##     support           confidence        coverage             lift       
##  Min.   :0.006101   Min.   :0.2500   Min.   :0.009964   Min.   :0.9932  
##  1st Qu.:0.007117   1st Qu.:0.2971   1st Qu.:0.018709   1st Qu.:1.6229  
##  Median :0.008744   Median :0.3554   Median :0.024809   Median :1.9332  
##  Mean   :0.011539   Mean   :0.3786   Mean   :0.032608   Mean   :2.0351  
##  3rd Qu.:0.012303   3rd Qu.:0.4495   3rd Qu.:0.035892   3rd Qu.:2.3565  
##  Max.   :0.074835   Max.   :0.6600   Max.   :0.255516   Max.   :3.9565  
##      count      
##  Min.   : 60.0  
##  1st Qu.: 70.0  
##  Median : 86.0  
##  Mean   :113.5  
##  3rd Qu.:121.0  
##  Max.   :736.0  
## 
## mining info:
##  data ntransactions support confidence
##  data          9835   0.006       0.25

  根据结果可以看到,有150个规则只包含2种商品,297个规则包含3种商品,16个规则包含四种商品。

2.查看前3个规则情况

  运行代码:

k<-inspect(datarules[1:3])
k

  结果展示:

##     lhs                rhs               support     confidence coverage  
## [1] {potted plants} => {whole milk}      0.006914082 0.4000000  0.01728521
## [2] {pasta}         => {whole milk}      0.006100661 0.4054054  0.01504830
## [3] {herbs}         => {root vegetables} 0.007015760 0.4312500  0.01626843
##     lift     count
## [1] 1.565460 68   
## [2] 1.586614 60   
## [3] 3.956477 69

  根据结果可以看到前3个规则支持度、置信度、提升度情况。其中第一条规则表示如果一个顾客购买了盆摘植物,那么他还会购买全脂牛奶,其支持度为0.007,置信度为0.400,表示该规则涵盖了大约0.7%的交易,且涉及盆摘植物购买的正确率为40%,提升度可以表示假定一个顾客购买了盆摘植物,其相对于一般顾客继续购买全脂牛奶的可能性大小。为方便更快的找出有用规则,利用对关联规则排序的方式提高模型性能。

3.2.3 提高模型性能

1. 对关联规则集合排序

  运行代码:

inspect(sort(datarules,by="lift")[1:5])

  结果展示:

##     lhs                   rhs                      support confidence   coverage     lift count
## [1] {herbs}            => {root vegetables}    0.007015760  0.4312500 0.01626843 3.956477    69
## [2] {berries}          => {whipped/sour cream} 0.009049314  0.2721713 0.03324860 3.796886    89
## [3] {other vegetables,                                                                         
##      tropical fruit,                                                                           
##      whole milk}       => {root vegetables}    0.007015760  0.4107143 0.01708185 3.768074    69
## [4] {beef,                                                                                     
##      other vegetables} => {root vegetables}    0.007930859  0.4020619 0.01972547 3.688692    78
## [5] {other vegetables,                                                                         
##      tropical fruit}   => {pip fruit}          0.009456024  0.2634561 0.03589222 3.482649    93

  根据结果可以看到提升度排名前五的规则情况,其中第一条规则提升度大约为3.96,表示购买药草的顾客继续购买根菜类蔬菜的可能性大约为一般顾客购买根菜类蔬菜的可能性的4倍。

2. 提取关联规则的子集

  假设一营销团队需要调查浆果是否经常于其他商品一起购买,利用提取关联规则子集的方法进行操作。

  运行代码:

berryrules<-subset(datarules,items %in% "berries")  #提取包含浆果的规则
inspect(berryrules)                                 #查看相关情况

  结果展示:

##     lhs          rhs                  support     confidence coverage  lift    
## [1] {berries} => {whipped/sour cream} 0.009049314 0.2721713  0.0332486 3.796886
## [2] {berries} => {yogurt}             0.010574479 0.3180428  0.0332486 2.279848
## [3] {berries} => {other vegetables}   0.010269446 0.3088685  0.0332486 1.596280
## [4] {berries} => {whole milk}         0.011794611 0.3547401  0.0332486 1.388328
##     count
## [1]  89  
## [2] 104  
## [3] 101  
## [4] 116

  根据结果显示,涉及浆果的规则有四个,其中购买浆果的顾客也经常购买鲜牛奶和酸奶。

3. 将关联规则保存到文件或数据框中

  运行代码:

write(datarules,file="F:\\datarules.csv",sep=",",quote=T,row.names=F)#保存为文件
datarules_df<-as(datarules,"data.frame")                             #保存为数据框
str(datarules_df)                                                    #查看数据类型

  结果展示:

## 'data.frame':    463 obs. of  6 variables:
##  $ rules     : Factor w/ 463 levels "{baking powder} => {other vegetables}",..: 340 302 207 206 208 341 402 21 139 140 ...
##  $ support   : num  0.00691 0.0061 0.00702 0.00773 0.00773 ...
##  $ confidence: num  0.4 0.405 0.431 0.475 0.475 ...
##  $ coverage  : num  0.0173 0.015 0.0163 0.0163 0.0163 ...
##  $ lift      : num  1.57 1.59 3.96 2.45 1.86 ...
##  $ count     : int  68 60 69 76 76 69 70 67 63 88 ...

4. 查看前6条个规则详情

  运行代码:

head(datarules_df)                                                   #查看前六行

  结果展示:

##                                rules     support confidence   coverage     lift
## 1    {potted plants} => {whole milk} 0.006914082  0.4000000 0.01728521 1.565460
## 2            {pasta} => {whole milk} 0.006100661  0.4054054 0.01504830 1.586614
## 3       {herbs} => {root vegetables} 0.007015760  0.4312500 0.01626843 3.956477
## 4      {herbs} => {other vegetables} 0.007727504  0.4750000 0.01626843 2.454874
## 5            {herbs} => {whole milk} 0.007727504  0.4750000 0.01626843 1.858983
## 6 {processed cheese} => {whole milk} 0.007015760  0.4233129 0.01657346 1.656698
##   count
## 1    68
## 2    60
## 3    69
## 4    76
## 5    76
## 6    69

  为分享市场购物篮分析结果,我们将数据保存为文件形式和数据框形式。

相关文章
|
8月前
|
算法
关联规则分析(Apriori算法2
关联规则分析(Apriori算法2
80 0
|
4月前
|
数据采集 供应链 算法
|
机器学习/深度学习 算法 搜索推荐
关联规则挖掘:Apriori算法的深度探讨
关联规则挖掘:Apriori算法的深度探讨
1234 0
|
8月前
|
数据采集 算法 安全
数据分享|R语言关联规则挖掘apriori算法挖掘评估汽车性能数据
数据分享|R语言关联规则挖掘apriori算法挖掘评估汽车性能数据
|
8月前
|
数据可视化 数据挖掘
R语言APRIORI模型关联规则挖掘分析脑出血急性期用药规律最常配伍可视化
R语言APRIORI模型关联规则挖掘分析脑出血急性期用药规律最常配伍可视化
|
8月前
|
算法 数据挖掘 数据库
【数据挖掘】关联规则、频繁项集、闭项集详解(图文解释 超详细)
【数据挖掘】关联规则、频繁项集、闭项集详解(图文解释 超详细)
1330 1
|
8月前
|
算法 数据挖掘
关联规则分析(Apriori算法
关联规则分析(Apriori算法
96 0
|
存储 算法 搜索推荐
# 【推荐系统】:关联规则
# 【推荐系统】:关联规则
# 【推荐系统】:关联规则
|
机器学习/深度学习 人工智能 搜索推荐
推荐系统:ARL(关联规则学习)
一家公司的产品内容一般都是非常丰富的,但用户的兴趣往往会针对整个内容集进行筛选,挑选出用户感兴趣的产品,筛选的规则因人而异。为了让用户不迷失在丰富的产品集群中,并根据兴趣领域达到所需的个性化服务,一般都会制作各种过滤器。这些过滤器和算法显示就是我们的“推荐系统”。
236 0