【C++】C++ 入门 — 命名空间,输入输出,函数新特性

简介: 本文章是我对C++学习的开始,很荣幸与大家一同进步。首先我先介绍一下C++,C++是上个世纪为了解决软件危机所创立 的一项面向对象的编程语言(OOP思想)。

1 前言

本文章是我对C++学习的开始,很荣幸与大家一同进步。

首先我先介绍一下C++,C++是上个世纪为了解决软件危机所创立 的一项面向对象的编程语言(OOP思想)。

1982年,Bjarne Stroustrup博士在C语言的基础上引入并扩充了面向对象的概念,发明了一种新的程序语言。为了表达该语言与C语言的渊源关系,命名为C++。因此:C++是基于C语言而产生的,它既可以进行C语言的过程化程序设计,又可以进行以抽象数据类型为特点的基于对象的程序设计,还可以进行面向对象的程序设计

根据今年一月TIOBE公布的排行榜,C++依然稳居前三,可见这是一款非常优秀的编程语言

2 命名空间

2.1 概念引入

在C语言中我们时常遇见这样的冲突:

重定义!!!总是不小心定义相同变量,多人操作的时候很难避免这个问题。

于是C++为了避免这类问题,引入了“命名空间”的概念;

使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的

2.2 开始使用

如活动定义一个命名空间呢?这里需要使用namespace关键字

namespace name
{
    // 命名空间中可以定义变量/函数/类型
  int a = 0;
  
  double add(double a,double b){
    return a + b;
  }

  struct node{
    int val ;
    int size;
  }
  
}

并且可以做到嵌套定义:

namespace name1{
  namespace name2{
    //...
  }
}

注意:

同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。

2.3 投入应用

使用命名空间主要有三种使用方法:

1 加命名空间名称及作用域限定符;

2 使用using将命名空间中某个成员引入;

3 使用using namespace 命名空间名称 引入.

来看第一种:

命名空间名称及作用域限定符

#include<iostream>
//定义两个命名空间
namespace name1 {
  int a = 0;
}
namespace name2 {
  int a = 0;
}

int main() {
//使用 作用域限定符 ::
  name1::a = 1;
  name2::a = 1;

  return 0;
}

使用using将命名空间中某个成员引入

#include<iostream>
//定义两个命名空间
namespace name1 {
  int a = 0;
  int b = 0;
}
//只有引入的变量才可以省略 命名空间和 作用域符号;
using namespace name1::a;

int main() {
//使用 作用域限定符 ::
  a = 1;
  name :: b = 2;

  return 0;
}

使用using namespace 命名空间名称 引入

#include<iostream>
//定义两个命名空间
namespace name1 {
  int a = 0;
  int b = 0;
}
//引入命名空间后,其中的变量/函数/结构体 
//可以直接使用
using namespace name1;

int main() {

  a = 1;
  b = 2;
  return 0;
}

3 输入与输出

c++中的输入输出与C语言略有不同。来看样例

#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
  cout<<"Hello world!!!"<<endl;
  return 0;
}

运行效果

3.1 基础知识

  1. 使用cout标准输出对象(控制台)和cin 标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。
  2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含头文件中。
  3. <<是流插入运算符,>>是流提取运算符。
  4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型
  5. 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识,这些知识后续才会学习,所以这里只是简单学习如何使用。后面我们更深入的学习IO流用法及原理。

3.2 开始使用

我们来看样例:

#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
  char a = 0;
  int b;
  float c = 0;
  cin >> a;
  //支持连续输入,并自动识别类型。
  cin >> b >> c;
  cout << "输出\n" << a << '\n' << b << '\n' << c << '\n' << endl;
  return 0;
}

运行效果:

这方面就比C语言的printf scanf等函数方便许多。

3.3 注意局限

大家也一定注意到了一点,c++中既然直接使用了变量名输出,那如何控制输出格式呢?答案是有办法实现的,就是比较复杂。所以我们直接使用C语言中的printf函数即可,毕竟c++兼容绝大部分的C语言。

4 函数新特性

4.1 缺省参数

4.1.1 开始使用

缺省参数的概念十分好理解,就是在函数定义中加入参数的默认值,并且在没有传入对应参数时,使用默认值。

来看样例:

// 全缺省
using namespace std;

void Func(int a = 10, int b = 20, int c = 30)
{
  cout << "a = " << a << endl;
  cout << "b = " << b << endl;
  cout << "c = " << c << endl << endl;
}

int main()
{
  //半缺省 
  Func(1, 2, 3) ;
  Func(1, 2);
  Func(1);
  //全缺省
  Func();

  return 0;
}

来看运行效果:

4.1.2 注意事项

  1. 一定注意缺省参数是从左向右传入参数,无法做到传入指定参数。
  2. 缺省参数不能在函数声明和定义中同时出现(如果声明与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值。所以我们一般在声明中给入默认值,这样方便使用、检查错误等操作)
  3. 缺省值必须是常量或者全局变量
  1. C语言不支持(编译器不支持)

4.2 函数重载

4.2.1 开始使用

在C语言中我们无法实现同一个函数名返回不同类型值或者使用不同类型参数。

所以就导致简单的加和函数Add 如果要实现不同类型的加和不免会出现:

AddInt

AddFloat

AddChar

···

不仅繁琐,而且调用的时候也不方便。


在自然语言中,一个词可以有多重含义,人们可以通过上下文来判断该词真实的含义,即该词被重载了

c++ 于是就引入了函数重载的概念。

来看样例:

#include<iostream>

using namespace std;
int Add(int a = 0, int b = 0) {
   return a + b;
}
double Add(double a = 0.0, int b = 0) {
   return a + b;
}
int main() 
{
   cout << Add(1, 2) << endl;
   cout << Add(3.14, 2) << endl;

   return 0;
}

来看运行效果:

4.2.2 如何实现

那么这么强大的函数重载是如何实现的呢???

答案就在汇编代码中

在c++中,对于一个函数的储存与C语言不同,C++使用了更加具体命名方式(具体要看编译器);我个人非常喜欢g++的形式。上面两个函数分别为:

_Z3Addii

_Z3Adddi

目前我还没有能力深入讲解其中的道理。

Thanks♪(・ω・)ノ谢谢阅读

下一篇文章见!!!

相关文章
|
26天前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
54 12
|
2月前
|
存储 分布式计算 编译器
C++入门基础2
本内容主要讲解C++中的引用、inline函数和nullptr。引用是变量的别名,与原变量共享内存,定义时需初始化且不可更改指向对象,适用于传参和返回值以提高效率;const引用可增强代码灵活性。Inline函数通过展开提高效率,但是否展开由编译器决定,不建议分离声明与定义。Nullptr用于指针赋空,取代C语言中的NULL。最后鼓励持续学习,精进技能,提升竞争力。
|
3月前
|
存储 缓存 C++
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
|
2月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
146 6
|
6月前
|
安全 编译器 C++
【C++11】新特性
`C++11`是2011年发布的`C++`重要版本,引入了约140个新特性和600个缺陷修复。其中,列表初始化(List Initialization)提供了一种更统一、更灵活和更安全的初始化方式,支持内置类型和满足特定条件的自定义类型。此外,`C++11`还引入了`auto`关键字用于自动类型推导,简化了复杂类型的声明,提高了代码的可读性和可维护性。`decltype`则用于根据表达式推导类型,增强了编译时类型检查的能力,特别适用于模板和泛型编程。
59 2
|
7月前
|
C++
C++ 20新特性之结构化绑定
在C++ 20出现之前,当我们需要访问一个结构体或类的多个成员时,通常使用.或->操作符。对于复杂的数据结构,这种访问方式往往会显得冗长,也难以理解。C++ 20中引入的结构化绑定允许我们直接从一个聚合类型(比如:tuple、struct、class等)中提取出多个成员,并为它们分别命名。这一特性大大简化了对复杂数据结构的访问方式,使代码更加清晰、易读。
91 0
|
3月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
2月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
58 16
|
2月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。