基于目标级联法的微网群多主体分布式优化调度(已更新)

简介: 基于目标级联法的微网群多主体分布式优化调度(已更新)

一、主要内容

本文复现《基于目标级联法的微网群多主体分布式优化调度》文献的目标级联部分,

建立微网群系统的两级递阶优化调度模型: 上层是微网群能量调度中心优化调度模型,下层是子微网优化调度模型,然后对所建递阶优化调度模型耦合性和分布性进行分析,采用一种新型的协同优化方法———目标级联法,实现上下层模型的解耦独立优化,以3微网为算例进行验证,证明方法的可行性。

1.1 上层微网群模型

1.2 下层微网模型

二、部分程序

%程序开发时间:2023年1月26日
%欢迎关注微信公众号:电力程序
%----------------------------
%%目标级联协调优化
gPMG = zeros(3,24);%微网群与微网间联络功率
gPpcc1 = zeros(1,24);%微网1与微网群联络功率,下同
gPpcc2 =zeros(1,24);
gPpcc3 = zeros(1,24);
parameterATC;
figure(1);
errorSet = [];
for k=1:8
[y1(k),gPpcc1,x_P_g1,x_P_ch1,x_P_dis1,x_P_w1,x_P_v1,x_c_ld1,Load1]=lower1(pho,gPMG,v,w);%下层微网1
[y2(k),gPpcc2,x_P_ch2,x_P_dis2,x_P_w2,x_P_v2,x_c_ld2,Load2]=lower2(pho,gPMG,v,w);%下层微网2
[y3(k),gPpcc3,x_P_g3,x_P_ch3,x_P_dis3,x_P_w3,x_P_v3,x_c_ld3,Load3]=lower3(pho,gPMG,v,w);%下层微网3
[y4(k),gPMG]=upperthree(pho,v,w,gPpcc1,gPpcc2,gPpcc3);%上层微网群
%%----得到结果----
gPMG=value(gPMG);
gPpcc1=value(gPpcc1);
gPpcc2=value(gPpcc2);
gPpcc3=value(gPpcc3);
gPMGc(:,k)=gPMG(:,10);%10时刻微网群连接变量数据储存
gPpcc1c(k)=gPpcc1(10);%10时刻微网1连接变量数据储存
gPpcc2c(k)=gPpcc2(10);%10时刻微网2连接变量数据储存
gPpcc3c(k)=gPpcc3(10);%10时刻微网3连接变量数据储存
    postError = norm(gPMG-[gPpcc1;gPpcc2;gPpcc3])
    disp(sprintf('postError=%f',postError));
        errorSet = [errorSet postError];
        %画图
    figure(1),plot(errorSet),pause(0.1)
    xlabel('迭代次数');
    ylabel('误差值');
    v=v+2*w*w*postError;
    w=beta*w;
    yalmip('clear');
end
%最终迭代后结果图
figure;
ldz=max(x_c_ld1,0);
ldf=min(x_c_ld1,0);
wwz=max(gPpcc1,0);
wwf=min(gPpcc1,0);
yyf=[-x_P_ch1;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis1;x_P_g1;x_P_w1;x_P_v1;ldz;wwz]';
bar(yyz,'stack');
plot(Load1,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网1功率');
sy=legend('储能充电','负荷响应','接受微网群电功率','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网1负荷');
sy.NumColumns = 3;
ylim([-6 14]);
figure;
ldz=max(x_c_ld2,0);
ldf=min(x_c_ld2,0);
wwz=max(gPpcc2,0);
wwf=min(gPpcc2,0);
yyf=[-x_P_ch2;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis2;x_P_w2;x_P_v2;ldz;wwz]';
bar(yyz,'stack');
plot(Load2,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网2功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','风电','光伏','负荷响应','供给其他微网','微网2负荷');
sy.NumColumns = 3;
ylim([-2 8]);
figure;
ldz=max(x_c_ld3,0);
ldf=min(x_c_ld3,0);
wwz=max(gPpcc3,0);
wwf=min(gPpcc3,0);
yyf=[-x_P_ch3;ldf;wwf]';
bar(yyf,'stack');
hold on
yyz=[-x_P_dis3;x_P_g3;x_P_w3;x_P_v3;ldz;wwz]';
bar(yyz,'stack');
plot(Load3,'r','LineWidth',1.5)
xlabel('时间/h');
ylabel('功率/MW');
title('微网3功率');
sy=legend('储能充电','负荷响应','接受微网群电能','储能放电','发电','风电','光伏','负荷响应','供给其他微网','微网3负荷');
sy.NumColumns = 3;
ylim([-5 11]);
figure;
title_name = '微网群连接变量时段10趋同过程';
title(title_name);  %%关键
subplot(311)
plot(gPpcc1c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(1,:),'r-o','LineWidth',1.5)
grid on
legend('下层连接变量值','上层连接变量值');
xlabel('迭代次数');
ylabel('子微网1联络功率');
subplot(312)
plot(gPpcc2c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(2,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网2联络功率');
subplot(313)
plot(gPpcc3c,'o--','LineWidth',1.5)
hold on
plot(gPMGc(3,:),'r-o','LineWidth',1.5)
grid on
xlabel('迭代次数');
ylabel('子微网3联络功率');


三、实现效果

以上是按照文献编写的程序,存在一个问题:联络线功率之和不为零,一般而言,微网群中供应功率和吸收功率应该是守恒的,因此,对该部分进行了完善,实现效果如下:


相关文章
|
4天前
|
调度
【核心完整复现】基于目标级联法的微网群多主体分布式优化调度
【核心完整复现】基于目标级联法的微网群多主体分布式优化调度
|
4天前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
4天前
|
调度
考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法(matlab代码)
考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法(matlab代码)
|
4天前
|
算法
考虑分布式电源的配电网无功优化问题研究(matlab代码)
考虑分布式电源的配电网无功优化问题研究(matlab代码)
|
4天前
|
算法 Serverless 调度
基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)
基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)
|
4天前
|
NoSQL Java 关系型数据库
【Redis系列笔记】分布式锁
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
131 2
|
4天前
|
存储 监控 NoSQL
【Redis】分布式锁及其他常见问题
【Redis】分布式锁及其他常见问题
17 0
|
4天前
|
NoSQL Java Redis
【Redis】Redis实现分布式锁
【Redis】Redis实现分布式锁
7 0
|
4天前
|
监控 NoSQL 算法
探秘Redis分布式锁:实战与注意事项
本文介绍了Redis分区容错中的分布式锁概念,包括利用Watch实现乐观锁和使用setnx防止库存超卖。乐观锁通过Watch命令监控键值变化,在事务中执行修改,若键值被改变则事务失败。Java代码示例展示了具体实现。setnx命令用于库存操作,确保无超卖,通过设置锁并检查库存来更新。文章还讨论了分布式锁存在的问题,如客户端阻塞、时钟漂移和单点故障,并提出了RedLock算法来提高可靠性。Redisson作为生产环境的分布式锁实现,提供了可重入锁、读写锁等高级功能。最后,文章对比了Redis、Zookeeper和etcd的分布式锁特性。
134 16
探秘Redis分布式锁:实战与注意事项
|
4天前
|
NoSQL Java 大数据
介绍redis分布式锁
分布式锁是解决多进程在分布式环境中争夺资源的问题,与本地锁相似但适用于不同进程。以Redis为例,通过`setIfAbsent`实现占锁,加锁同时设置过期时间避免死锁。然而,获取锁与设置过期时间非原子性可能导致并发问题,解决方案是使用`setIfAbsent`的超时参数。此外,释放锁前需验证归属,防止误删他人锁,可借助Lua脚本确保原子性。实际应用中还有锁续期、重试机制等复杂问题,现成解决方案如RedisLockRegistry和Redisson。