自研分布式训练框架EPL问题之实现显存的极致优化如何解决

简介: 自研分布式训练框架EPL问题之实现显存的极致优化如何解决

问题一:EPL框架在阿里巴巴内部支持哪些业务场景,并举例说明?


EPL框架在阿里巴巴内部支持哪些业务场景,并举例说明?


参考回答:

EPL框架在阿里巴巴内部支持图像、推荐、语音、视频、自然语言、多模态等多种业务场景。例如,EPL成功支持了10万亿规模的M6模型训练和Bert模型的训练,展现了其在大规模模型训练方面的能力。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/674998



问题二:在T5模型上,EPL通过哪些显存优化技术的组合使用,实现了显存的极致优化?


在T5模型上,EPL通过哪些显存优化技术的组合使用,实现了显存的极致优化?


参考回答:

在T5模型上,EPL通过开启GC(Gradient Checkpoint)、ZeRO和显存优化的AMP技术的组合使用,实现了显存的极致优化。在性能保持不变的情况下,显存降低了2.6倍。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675000



问题三:训练万亿/10万亿参数的M6模型时,EPL框架如何实现算力需求的降低?


训练万亿/10万亿参数的M6模型时,EPL框架如何实现算力需求的降低?


参考回答:

为了降低训练万亿/10万亿参数M6模型的算力需求,EPL框架中实现了MoE(Mixture-of-Experts)结构。MoE通过稀疏激活的特点,使用Gating(Router)为输入选择Top-k的expert进行计算,从而大大减少算力需求。此外,EPL还支持专家并行(EP),将experts拆分到多个devices上,进一步降低单个device的显存和算力需求。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675001



问题四:在训练M6模型时,EPL采用了哪些并行策略?


在训练M6模型时,EPL采用了哪些并行策略?


参考回答:

在训练M6模型时,EPL采用了数据并行+专家并行的混合并行策略。具体来说,MoE layer采用专家并行来降低算力需求,而其他layer则采用数据并行来提升训练的并发度。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675003



问题五:如何在EPL中为M6模型配置混合并行策略?


如何在EPL中为M6模型配置混合并行策略?


参考回答:

在EPL中为M6模型配置混合并行策略非常简单,只需要在模型代码中增加几行annotation(注释)来配置并行策略即可,无需对模型本身做任何修改。例如,可以通过特定的annotation来指定哪些层使用数据并行,哪些层使用专家并行。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/675004

相关文章
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
ICLR 2025 | EDiT:一种基于 Local SGD 策略的大模型高效分布式训练方法
蚂蚁 AI Infra 团队在深度学习最核心之一的训练框架方向上持续投入与创新,实现了提升资源利用率、加速训练、提升训练稳定性等目标。我们提出的 EDiT 方法,即为其中一项工作。
|
2月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
219 0
分布式爬虫框架Scrapy-Redis实战指南
|
1月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
2月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
153 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
5月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
1898 66
|
5月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
271 73
|
3月前
|
存储 监控 TensorFlow
DeepRec Extension 打造稳定高效的分布式训练
DeepRec Extension 打造稳定高效的分布式训练
|
3月前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
4月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
200 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
3月前
|
机器学习/深度学习 存储
DeepSeek进阶开发与应用4:DeepSeek中的分布式训练技术
随着深度学习模型和数据集规模的扩大,单机训练已无法满足需求,分布式训练技术应运而生。DeepSeek框架支持数据并行和模型并行两种模式,通过将计算任务分配到多个节点上并行执行,显著提高训练效率。本文介绍DeepSeek中的分布式训练技术,包括配置与启动方法,帮助用户轻松实现大规模模型训练。数据并行通过`MirroredStrategy`同步梯度,适用于大多数模型;模型并行则通过`ParameterServerStrategy`异步处理大模型。DeepSeek简化了分布式环境配置,支持单机多卡和多机多卡等场景。