共享单车数据可视化分析|附代码数据

简介: 共享单车数据可视化分析|附代码数据


随着智能手机的普及和手机用户的激增,共享单车作为城市交通系统的一个重要组成部分,以绿色环保、便捷高效、经济环保为特征蓬勃发展点击文末“阅读原文”获取完整代码数据


相关视频

image.png

作为城市共享交通系统的一个重要组成部分,以绿色环保、便捷高效、经济环保为特征的自行车共享行业在2016年用户总数达到2030万人次,全国运营市场达到11.5亿元。

基于以上背景,tecdat研究实验室(Tecdat Research Lab)对北京共享单车的数据进行分析,用数据探索“最后一公里出行”解决方案,勾勒出共享单车使用与用户出行现状。

填补公共交通空白:解决“两公里内出行难”


从各个时间段的单车使用情况来看,上午8点和下午6点左右是用车高峰期,即早晚上下班时间的出行高峰明显,呈M型分布,早晚高峰期间发生的订单量占当日总订单量的40%左右。


从骑行距离的分布情况来看,我们发现主要集中在 200-1500 米,解决了将近80%的用户“两公里范围内出行难”的需求,有短距离出行和短途接驳的作用,大大提高了出行效率,也有效地补充了长途出行。







骑行大多位于商圈,目的地更加有趣、多元


从骑行的始终点来看,我们发现用户使用密集的区域主要包括国贸、大望路、建外大街、王府井等。


从出行的始终点和路径来看单车出行目的地多为商圈,行车频率一定程度上反映了某个地区的商业化程度。

与长途旅行相比,短途骑行目的地更加有趣点,更加多元化,同时也满足了消费者对高频和多次微型旅行的需求。用户的骑行目的地主要是生活休闲,购物,餐饮商业区。

结语

共享自行车数据可以实时表达城市的密度以及人们居住地和工作地之间的交通动态,同时对公共交通进行了有益补充,大大提高了大众出行效率。

因为城市基础设施资源的稀缺,共享出行成为城市公共交通的“潜在替代品”,也促进了整个共享行业的快速发展。

相关文章
|
9月前
|
数据可视化 数据挖掘 Python
【数据分析与可视化】利用Python对泰坦尼克号幸存者数据分析与可视化(附源码)
【数据分析与可视化】利用Python对泰坦尼克号幸存者数据分析与可视化(附源码)
444 0
|
6月前
|
数据采集 JSON 数据可视化
【数据采集与可视化案例】基于python的国家级非物质文化遗产数据采集与可视化分析
本文介绍了一个基于Python的数据采集与可视化分析项目,该项目通过爬虫技术从国家级非物质文化遗产代表性项目名录网站获取数据,并运用数据清洗、转换、集成和规约等方法处理数据,最终利用pyecharts库进行多种数据可视化展示,包括分布地、类别、时间趋势等,以直观呈现非物质文化遗产的相关信息。
290 0
|
9月前
|
机器学习/深度学习 算法 数据挖掘
python数据分析——在数据分析中有关概率论的知识
参数和统计量在数据分析中起着至关重要的作用。参数是对总体特征的描述,如均值、方差等,而统计量则是基于样本数据计算得出的,用于估计或推断总体参数的值。 在统计学中,参数通常被视为未知的固定值,而统计量则是随机变量,因为它们的值会随着样本的不同而变化。这种差异使得统计量在推断总体参数时具有重要意义。例如,我们可以通过计算样本均值来估计总体均值,这就是一个典型的统计量应用。
148 1
|
9月前
|
数据采集 数据可视化
R语言用相关网络图可视化分析汽车配置和饮酒习惯
R语言用相关网络图可视化分析汽车配置和饮酒习惯
QGS
|
9月前
|
JSON 缓存 JavaScript
手拉手浅学JSONCrack数据可视化
手拉手浅学JSONCrack数据可视化
QGS
119 1
|
9月前
|
SQL 数据可视化 数据挖掘
Day01-数据分析图鉴
Day01-数据分析图鉴
|
数据可视化
funkyheatmap |临床+组学+分组数据可视化“神器”,时髦的热图
funkyheatmap |临床+组学+分组数据可视化“神器”,时髦的热图
163 0
|
数据采集 数据可视化 数据挖掘
数据分析案例-旅游景点票价预测
数据分析案例-旅游景点票价预测
343 0
数据分析案例-旅游景点票价预测
|
机器学习/深度学习 数据可视化 算法
数据探索很麻烦?推荐一款史上最强大的特征分析可视化工具:yellowbrick
数据探索很麻烦?推荐一款史上最强大的特征分析可视化工具:yellowbrick
数据探索很麻烦?推荐一款史上最强大的特征分析可视化工具:yellowbrick
|
数据挖掘 数据库
《R语言游戏数据分析与挖掘》一1.4 小结
本节书摘来华章计算机《R语言游戏数据分析与挖掘》一书中的第1章 ,第1.4节,谢佳标 著 更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1028 0