Python中精通异常日志记录

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Python中精通异常日志记录

Python中精通异常日志记录

异常处理是任何健壮的Python程序的基础部分。日志记录是监控程序行为、调试和诊断问题的重要工具。本文将探讨Python中如何高效地记录异常日志,并提供多个代码示例。

异常处理基础

在Python中,异常可以通过tryexcept语句来处理。当代码块在try段内执行时,如果发生异常,执行流将跳转到except块。

try:
    # 尝试执行的代码
    1 / 0
except ZeroDivisionError as e:
    # 处理异常的代码
    print(f"An error occurred: {e}")

当除以零的操作发生时,将捕获ZeroDivisionError并打印错误消息。

引入日志记录

日志记录模块允许您记录程序的操作,这比仅仅使用print语句要更加灵活和强大。

示例1: 基本日志记录

让我们引入日志记录模块并用它来记录一个异常。

import logging

logging.basicConfig(level=logging.ERROR)

try:
    1 / 0
except ZeroDivisionError as e:
    logging.error(f"An error occurred: {e}")

上面的代码将错误消息记录到标准输出。basicConfig函数用于配置日志记录的基本设置,例如日志级别。

示例2: 日志记录到文件

您可能想将日志记录到文件中以便于后续分析。

import logging

logging.basicConfig(filename='example.log', level=logging.ERROR)

try:
    open('non_existent_file.txt', 'r')
except FileNotFoundError as e:
    logging.error(e, exc_info=True)

这次我们尝试打开一个不存在的文件,捕获FileNotFoundError异常,并将详细的异常信息记录到example.log文件中。exc_info=True参数使得异常的堆栈信息也被记录下来。

示例3: 格式化日志消息

日志消息可以通过指定格式化字符串来进行自定义。

import logging

log_format = "%(asctime)s - %(levelname)s - %(message)s"
logging.basicConfig(format=log_format, level=logging.ERROR)

try:
    '2' + 2
except TypeError as e:
    logging.error("Type error: %s", e, exc_info=True)

这个例子在发生类型错误时记录错误。日志消息将包含时间戳、日志级别和错误消息。

示例4: 使用日志记录装饰器

为了使异常日志记录更为系统化,你可以创建一个装饰器来自动处理函数中的异常。

import logging
import functools

def log_exceptions(func):
    """装饰器,记录函数异常"""
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            logging.error("Exception occurred", exc_info=True)
            raise  # 重新抛出异常以便调用者知晓
    return wrapper

logging.basicConfig(level=logging.ERROR)

@log_exceptions
def risky_function(a, b):
    return a / b

# 当我们调用risky_function时,所有的异常都将被记录
risky_function(1, 0)


这个装饰器捕获了任何异常,记录了它们,并把异常抛给了函数的调用者。


总结


异常日志记录是Python编程中一个不可或缺的部分,是有效程序监控和问题排查的关键。本文介绍了如何使用Python的logging模块来记录异常,并提供了多种技术来增强记录过程,包括基本的日志记录、将日志输出到文件、格式化日志消息,以及使用装饰器自动化处理异常日志记录。掌握这些技能能够帮助你编写更加健壮、可维护的Python应用程序。


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
2月前
|
测试技术 开发工具 git
写了BUG还想跑——闲鱼异常日志问题自动追踪-定位-分发机制
为了高效地发现、定位和解决预发问题,闲鱼团队研发了一套异常日志问题自动追踪-定位-分发机制。这套机制通过自动化手段,实现了异常日志的定时扫描、精准定位和自动分发,显著降低了开发和测试的成本,提高了问题解决的效率。
写了BUG还想跑——闲鱼异常日志问题自动追踪-定位-分发机制
|
2月前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录
|
2月前
|
测试技术 开发者 Python
对于Python中的异常要如何处理,raise关键字你真的了解吗?一篇文章带你从头了解
`raise`关键字在Python中用于显式引发异常,允许开发者在检测到错误条件时中断程序流程,并通过异常处理机制(如try-except块)接管控制。`raise`后可跟异常类型、异常对象及错误信息,适用于验证输入、处理错误、自定义异常、重新引发异常及测试等场景。例如,`raise ValueError("Invalid input")`用于验证输入数据,若不符合预期则引发异常,确保数据准确并提供清晰错误信息。此外,通过自定义异常类,可以针对特定错误情况提供更具体的信息,增强代码的健壮性和可维护性。
|
2月前
|
Python
在Python中,`try...except`语句用于捕获和处理程序运行时的异常
在Python中,`try...except`语句用于捕获和处理程序运行时的异常
57 5
|
2月前
|
Python
在Python中,自定义函数可以抛出自定义异常
在Python中,自定义函数可以抛出自定义异常
49 5
|
2月前
|
存储 开发者 Python
自定义Python的异常
自定义Python的异常
23 5
|
3月前
|
存储 索引 Python
|
3月前
|
人工智能 Oracle Java
解决 Java 打印日志吞异常堆栈的问题
前几天有同学找我查一个空指针问题,Java 打印日志时,异常堆栈信息被吞了,导致定位不到出问题的地方。
47 2
|
3月前
|
Python
python读写操作excel日志
主要是读写操作,创建表格
69 2
|
3月前
|
Python
Python生成器、装饰器、异常
【10月更文挑战第15天】