1. SQL提示
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
//use index : 建议MySQL使用哪一个索引完成此次查询 //(仅仅是建议,mysql内部还会再次进行评估)。 explain select * from tb_user use index(idx_user_pro) where profession = '软件工程'; // ignore index : 忽略指定的索引。 explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工程'; //force index : 强制使用索引。 explain select * from tb_user force index(idx_user_pro) where profession = '软件工程';
2. 大批量插入数据
如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:
windows/linux
-- 客户端连接服务端时,加上参数 -–local-infile mysql –-local-infile -uroot -proot -- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关 set global local_infile = 1; -- 执行load指令将准备好的数据,加载到表结构中 load data local infile '/root/sql1.log' into table tb_user fields terminated by ',' lines terminated by '\n' ;
docker exec -it mysql bash -- 客户端连接服务端时,加上参数 -–local-infile mysql –-local-infile -u root -p -- 查询local_infile是否开启 select @@local_infile; -- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关 set global local_infile = 1; -- 创建数据库 create database xxx; -- 切换数据库 use xxx; -- 创建表 CREATE TABLE `tb_user` ( `id` INT(11) NOT NULL AUTO_INCREMENT, `username` VARCHAR(50) NOT NULL, `password` VARCHAR(50) NOT NULL, `name` VARCHAR(20) NOT NULL, `birthday` DATE DEFAULT NULL, `sex` CHAR(1) DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `unique_user_username` (`username`) ) ENGINE=INNODB DEFAULT CHARSET=utf8 ; //将load_user_100w_sort.sql文件上传到“/root/mysql/data”下 //注意:/var/lib/mysql目录是mysql容器内部的目录 //和linux上的/root/mysql/data目录相映射关系 load data local infile '/var/lib/mysql/load_user_100w_sort.sql' into table tb_user fields terminated by ',' lines terminated by '\n' ;
3. 主键优化
3.1. 概述
在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。行数据,都是存储在聚集索引的叶子节点上的。
而我们之前也讲解过InnoDB的逻辑结构图:
在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接。
3.2. 页分裂
如果一个页快满了,此时我们插入数据,但下一个页的空间也全部占满。基于索引的有序性,这个时候Mysql将创建一个新页,然后将快满的这个页的部分数据迁移到新页中,这部分数据就是超出原来那个页阈值的那部分数据,之后再插入新的数据。
假如主键乱序插入50这条数据,发生页分裂,流程如下:
3.3. 页合并
如果页中的数据被删除,那么实际上这块的空间并不会被回收,而是标记为可重复利用。当一个页的数据被删除或者更新,空间小于所规定的阈值大小,那么Mysql会查找前一个页,和后一个页,判断是否可以将这个页合并到另外一个页,这样就可以节省下一个页的空间。
(MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。)
假如陆续删除数据,发生页合并,流程如下:
总结
页分裂和页合并是针对索引结构的优化技术,页分裂保证了索引的有序性,而页合并保证了紧凑性,减少了页数量(磁盘I/O操作)。两者并不是为了直接提高查询效率。然而,通过保持索引的合理组织和大小,这些技术可以间接地影响查询性能。
3.4. 主键设计
- 满足业务需求的情况下,尽量降低主键的长度。
- 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
- 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
- 业务操作时,避免对主键的修改。
4. order by优化
MySQL的排序,有两种方式:
Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。
对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。
5. group by优化
在分组操作时,可以通过索引来提高效率。
分组操作时,索引的使用也是满足最左前缀法则的。
6. limit优化
在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。所以一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
7. count优化
7.1. 概述
在之前的测试中,我们发现,如果数据量很大,在执行count操作时,是非常耗时的。
- MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高; 但是如果是带条件的count,MyISAM也慢。
- InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
如果说要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数据库进行,但是如果是带条件的count又比较麻烦了)。
7.2. count用法
count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加,最后返回累计值。
count用法 |
含义 |
count(主键) |
InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null) |
count(字段) |
没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。 |
count(数字) |
InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。 |
count(*) |
InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。 |
按照效率排序:
count(字段) < count(主键 id) < count(1) ≈ count(*)
8. update优化
其实这个是考虑两个事务之间在修改的时候,是行锁还是表锁的问题。
当在执行update语句的时候
- 条件必须是有索引的字段,这样InnoDB执行的是行锁
- 当条件不是有索引的字段的时候,那么则执行的是表锁,会造成阻塞,性能大大降低。
- InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁 。