【MySQL系列笔记】SQL优化

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: SQL优化是通过调整数据库查询、索引、表结构和配置参数等方式,提高SQL查询性能和效率的过程。它旨在减少查询执行时间、减少系统资源消耗,从而提升数据库系统整体性能。优化方法包括索引优化、查询重写、表分区、适当选择和调整数据库引擎等。

1. SQL提示

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。

//use index : 建议MySQL使用哪一个索引完成此次查询
//(仅仅是建议,mysql内部还会再次进行评估)。
explain select * from tb_user use index(idx_user_pro) where profession = '软件工程'; 
// ignore index : 忽略指定的索引。
explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工程'; 
//force index : 强制使用索引。
explain select * from tb_user force index(idx_user_pro) where profession = '软件工程';

2. 大批量插入数据

如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

windows/linux

-- 客户端连接服务端时,加上参数  -–local-infile
mysql –-local-infile  -uroot  -proot
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set  global  local_infile = 1;
-- 执行load指令将准备好的数据,加载到表结构中
load  data  local  infile  '/root/sql1.log'  into  table  tb_user 
fields  terminated  by  ','  lines  terminated  by  '\n' ;
docker exec -it mysql bash
-- 客户端连接服务端时,加上参数  -–local-infile
mysql –-local-infile  -u  root  -p
-- 查询local_infile是否开启
select @@local_infile;
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set  global  local_infile = 1;
-- 创建数据库
create database xxx;
-- 切换数据库
use xxx;
-- 创建表
CREATE TABLE `tb_user` (
  `id` INT(11) NOT NULL AUTO_INCREMENT,
  `username` VARCHAR(50) NOT NULL,
  `password` VARCHAR(50) NOT NULL,
  `name` VARCHAR(20) NOT NULL,
  `birthday` DATE DEFAULT NULL,
  `sex` CHAR(1) DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;
//将load_user_100w_sort.sql文件上传到“/root/mysql/data”下
//注意:/var/lib/mysql目录是mysql容器内部的目录
//和linux上的/root/mysql/data目录相映射关系
load  data  local  infile  '/var/lib/mysql/load_user_100w_sort.sql'  
into  table  tb_user  fields  terminated  by  ','  lines  terminated  by  '\n' ;

3. 主键优化

3.1. 概述

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。行数据,都是存储在聚集索引的叶子节点上的。

而我们之前也讲解过InnoDB的逻辑结构图:

在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接。

3.2. 页分裂

如果一个页快满了,此时我们插入数据,但下一个页的空间也全部占满。基于索引的有序性,这个时候Mysql将创建一个新页,然后将快满的这个页的部分数据迁移到新页中,这部分数据就是超出原来那个页阈值的那部分数据,之后再插入新的数据。


假如主键乱序插入50这条数据,发生页分裂,流程如下:


3.3. 页合并

如果页中的数据被删除,那么实际上这块的空间并不会被回收,而是标记为可重复利用。当一个页的数据被删除或者更新,空间小于所规定的阈值大小,那么Mysql会查找前一个页,和后一个页,判断是否可以将这个页合并到另外一个页,这样就可以节省下一个页的空间。

(MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。)

假如陆续删除数据,发生页合并,流程如下:

总结

页分裂和页合并是针对索引结构的优化技术,页分裂保证了索引的有序性,而页合并保证了紧凑性,减少了页数量(磁盘I/O操作)。两者并不是为了直接提高查询效率。然而,通过保持索引的合理组织和大小,这些技术可以间接地影响查询性能。


3.4. 主键设计

  • 满足业务需求的情况下,尽量降低主键的长度。
  • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
  • 业务操作时,避免对主键的修改。

4. order by优化

MySQL的排序,有两种方式:

Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。

Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。

对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。

5. group by优化

在分组操作时,可以通过索引来提高效率。

分组操作时,索引的使用也是满足最左前缀法则的。

6. limit优化

在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。所以一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

7. count优化

7.1. 概述

在之前的测试中,我们发现,如果数据量很大,在执行count操作时,是非常耗时的。

  • MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高; 但是如果是带条件的count,MyISAM也慢。
  • InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

如果说要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数据库进行,但是如果是带条件的count又比较麻烦了)。

7.2. count用法

count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加,最后返回累计值。

count用法

含义

count(主键)

InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)

count(字段)

没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。

count(数字)

InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。

count(*)

InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。


按照效率排序:

count(字段) < count(主键 id) < count(1) ≈ count(*)

8. update优化

其实这个是考虑两个事务之间在修改的时候,是行锁还是表锁的问题。

当在执行update语句的时候

  • 条件必须是有索引的字段,这样InnoDB执行的是行锁
  • 当条件不是有索引的字段的时候,那么则执行的是表锁,会造成阻塞,性能大大降低。
  • InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁 。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
8天前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
46 10
|
5天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
20 3
|
7天前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
8天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
28 1
|
15天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
46 9
|
15天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
42 5
|
20天前
|
存储 关系型数据库 MySQL
优化 MySQL 的锁机制以提高并发性能
【10月更文挑战第16天】优化 MySQL 锁机制需要综合考虑多个因素,根据具体的应用场景和需求进行针对性的调整。通过不断地优化和改进,可以提高数据库的并发性能,提升系统的整体效率。
28 1
|
20天前
|
缓存 关系型数据库 MySQL
一文彻底弄懂MySQL优化之深度分页
【10月更文挑战第24天】本文深入探讨了 MySQL 深度分页的原理、常见问题及优化策略。首先解释了深度分页的概念及其带来的性能和资源问题。接着介绍了基于偏移量(OFFSET)和限制(LIMIT)以及基于游标的分页方法,并分析了它们的优缺点。最后,提出了多种优化策略,包括合理创建索引、优化查询语句和使用数据缓存,帮助提升分页查询的性能和系统稳定性。
|
9天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
46 0

相关产品

  • 云数据库 RDS MySQL 版
  • 下一篇
    无影云桌面