【期末不挂科-C++考前速过系列P5】大二C++实验作业-多态性(3道代码题)【解析,注释】

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【期末不挂科-C++考前速过系列P5】大二C++实验作业-多态性(3道代码题)【解析,注释】

前言

大家好吖,欢迎来到 YY 滴C++考前速过系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁

主要内容含:

\


程序1:

  • 写一个程序,定义抽象基类Container,由它派生出3个派生类:Sphere(球体)、Cylinder(圆柱体)、Cube(正方体)。用虚函数分别计算几种图形的表面积和体积。

以下是一个使用虚函数计算不同图形表面积和体积的示例程序:

#include <iostream>
#include <cmath>
using namespace std;

// 抽象基类:Container
class Container {
public:
    virtual double calculateSurfaceArea() = 0;
    virtual double calculateVolume() = 0;
};

// 派生类:Sphere(球体)
class Sphere : public Container {
private:
    double radius;

public:
    Sphere(double r) : radius(r) {}

    double calculateSurfaceArea() override {
        return 4 * M_PI * radius * radius;
    }

    double calculateVolume() override {
        return (4.0 / 3.0) * M_PI * radius * radius * radius;
    }
};

// 派生类:Cylinder(圆柱体)
class Cylinder : public Container {
private:
    double radius;
    double height;

public:
    Cylinder(double r, double h) : radius(r), height(h) {}

    double calculateSurfaceArea() override {
        return 2 * M_PI * radius * radius + 2 * M_PI * radius * height;
    }

    double calculateVolume() override {
        return M_PI * radius * radius * height;
    }
};

// 派生类:Cube(正方体)
class Cube : public Container {
private:
    double sideLength;

public:
    Cube(double s) : sideLength(s) {}

    double calculateSurfaceArea() override {
        return 6 * sideLength * sideLength;
    }

    double calculateVolume() override {
        return sideLength * sideLength * sideLength;
    }
};

int main() {
    Sphere s(5);
    Cylinder c(3, 7);
    Cube cu(4);

    cout << "Sphere Surface Area: " << s.calculateSurfaceArea() << endl;
    cout << "Sphere Volume: " << s.calculateVolume() << endl;

    cout << "Cylinder Surface Area: " << c.calculateSurfaceArea() << endl;
    cout << "Cylinder Volume: " << c.calculateVolume() << endl;

    cout << "Cube Surface Area: " << cu.calculateSurfaceArea() << endl;
    cout << "Cube Volume: " << cu.calculateVolume() << endl;

    return 0;
}

在这个示例中,我们定义了抽象基类 Container,并派生出了 Sphere(球体)、Cylinder(圆柱体)和

Cube(正方体)三个派生类。每个派生类都实现了 calculateSurfaceArea

calculateVolume

虚函数来计算不同图形的表面积和体积。在 main 函数中,我们创建了每种图形的实例,并输出了它们的表面积和体积。

程序2:

编写程序:定义抽象基类Shape,area( )为求图形面积的虚成员函数。由它派生出三个派生类:Circle(圆形)、Rectangle(长方形)、和Triangle (三角形),用虚函数area分别计算各种图形的面积。在主函数中,分别创建派生类的对象并计算其面积,求出它们的面积的和。要求用基类指针数组,使它的每一个元素指向一个派生类的对象,以体现多态性。

以下是一个使用多态性的示例程序,根据要求定义了抽象基类 Shape 和三个派生类 Circle(圆形)、Rectangle(长方形)和 Triangle(三角形):

#include <iostream>
#include <cmath>
using namespace std;

// 抽象基类:Shape
class Shape {
public:
    virtual double area() = 0;
};

// 派生类:Circle(圆形)
class Circle : public Shape {
private:
    double radius;

public:
    Circle(double r) : radius(r) {}

    double area() override {
        return M_PI * radius * radius;
    }
};

// 派生类:Rectangle(长方形)
class Rectangle : public Shape {
private:
    double length;
    double width;

public:
    Rectangle(double l, double w) : length(l), width(w) {}

    double area() override {
        return length * width;
    }
};

// 派生类:Triangle(三角形)
class Triangle : public Shape {
private:
    double base;
    double height;

public:
    Triangle(double b, double h) : base(b), height(h) {}

    double area() override {
        return 0.5 * base * height;
    }
};

int main() {
    Shape* shapes[3];
    shapes[0] = new Circle(5);
    shapes[1] = new Rectangle(4, 6);
    shapes[2] = new Triangle(3, 8);

    double totalArea = 0;
    for (int i = 0; i < 3; i++) {
        totalArea += shapes[i]->area();
    }

    cout << "Total area of all shapes: " << totalArea << endl;

    for (int i = 0; i < 3; i++) {
        delete shapes[i];
    }

    return 0;
}


在这个示例中,我们定义了抽象基类 Shape,并派生出了 Circle(圆形)、Rectangle(长方形)和

Triangle(三角形)三个派生类。每个派生类都实现了虚函数 area 来计算不同图形的面积。在 main

函数中,我们创建了一个基类指针数组,使其每个元素指向一个派生类的对象,以体现多态性。然后我们计算了每个图形的面积,并求出它们的面积的和。最后,记得释放动态分配的内存。

程序3:

计算正方体、球体、圆柱体的体积。要求:定义基类shape,在其中定义求体积的纯虚函数volume,并定义一个数据成员r,它可作为球体的半径、正方体的边长以及圆柱体的底面圆半径。由shape类派生出3个类,分别是正方体类、球体类和圆柱体类,在这3个类中都具有求体积的重定义版本。在主函数中统一求3种对象的体积,实现多态性。

以下是符合您要求的C++程序,其中定义了一个抽象基类 Shape,并派生出了 Cube(正方体)、Sphere(球体)和 Cylinder(圆柱体)三个派生类:

#include <iostream>
#include <cmath>
using namespace std;

// 抽象基类:Shape
class Shape {
public:
    virtual double volume() = 0;
};

// 派生类:Cube(正方体)
class Cube : public Shape {
private:
    double sideLength;

public:
    Cube(double s) : sideLength(s) {}

    double volume() override {
        return sideLength * sideLength * sideLength;
    }
};

// 派生类:Sphere(球体)
class Sphere : public Shape {
private:
    double radius;

public:
    Sphere(double r) : radius(r) {}

    double volume() override {
        return (4.0 / 3.0) * M_PI * pow(radius, 3);
    }
};

// 派生类:Cylinder(圆柱体)
class Cylinder : public Shape {
private:
    double radius;
    double height;

public:
    Cylinder(double r, double h) : radius(r), height(h) {}

    double volume() override {
        return M_PI * pow(radius, 2) * height;
    }
};

int main() {
    Shape* shapes[3];
    shapes[0] = new Cube(5); // 正方体边长为5
    shapes[1] = new Sphere(3); // 球体半径为3
    shapes[2] = new Cylinder(4, 6); // 圆柱体底面圆半径为4,高度为6

    for (int i = 0; i < 3; i++) {
        cout << "Volume of shape " << i+1 << ": " << shapes[i]->volume() << endl;
    }

    for (int i = 0; i < 3; i++) {
        delete shapes[i];
    }

    return 0;
}

在这个示例中,我们定义了抽象基类 Shape,并派生出了 Cube(正方体)、Sphere(球体)和

Cylinder(圆柱体)三个派生类。每个派生类都实现了虚函数 volume 来计算不同图形的体积。在 main

在这个示例中,我们定义了抽象基类 Shape,并派生出了 Cube(正方体)、Sphere(球体)和

Cylinder(圆柱体)三个派生类。每个派生类都实现了虚函数 volume 来计算不同图形的体积。在 main

相关文章
|
20天前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
57 10
|
19天前
|
前端开发 JavaScript 开发者
揭秘前端高手的秘密武器:深度解析递归组件与动态组件的奥妙,让你代码效率翻倍!
【10月更文挑战第23天】在Web开发中,组件化已成为主流。本文深入探讨了递归组件与动态组件的概念、应用及实现方式。递归组件通过在组件内部调用自身,适用于处理层级结构数据,如菜单和树形控件。动态组件则根据数据变化动态切换组件显示,适用于不同业务逻辑下的组件展示。通过示例,展示了这两种组件的实现方法及其在实际开发中的应用价值。
27 1
|
1月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
63 2
|
1月前
|
存储 搜索推荐 数据库
运用LangChain赋能企业规章制度制定:深入解析Retrieval-Augmented Generation(RAG)技术如何革新内部管理文件起草流程,实现高效合规与个性化定制的完美结合——实战指南与代码示例全面呈现
【10月更文挑战第3天】构建公司规章制度时,需融合业务实际与管理理论,制定合规且促发展的规则体系。尤其在数字化转型背景下,利用LangChain框架中的RAG技术,可提升规章制定效率与质量。通过Chroma向量数据库存储规章制度文本,并使用OpenAI Embeddings处理文本向量化,将现有文档转换后插入数据库。基于此,构建RAG生成器,根据输入问题检索信息并生成规章制度草案,加快更新速度并确保内容准确,灵活应对法律与业务变化,提高管理效率。此方法结合了先进的人工智能技术,展现了未来规章制度制定的新方向。
34 3
|
1月前
|
SQL 监控 关系型数据库
SQL错误代码1303解析与处理方法
在SQL编程和数据库管理中,遇到错误代码是常有的事,其中错误代码1303在不同数据库系统中可能代表不同的含义
|
3天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
14 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
66 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
52 0
|
1月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
60 0
|
1月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
80 0

推荐镜像

更多