R语言lasso惩罚稀疏加法(相加)模型SPAM拟合非线性数据和可视化

简介: R语言lasso惩罚稀疏加法(相加)模型SPAM拟合非线性数据和可视化

全文链接:https://tecdat.cn/?p=33462


本文将关注R语言中的LASSO(Least Absolute Shrinkage and Selection Operator)惩罚稀疏加法模型(Sparse Additive Model,简称SPAM)。SPAM是一种用于拟合非线性数据的强大工具,它可以通过估计非线性函数的加法组件来捕捉输入变量与响应变量之间的复杂关系点击文末“阅读原文”获取完整代码数据


通过本文,我们将展示如何帮助客户在R语言中使用LASSO惩罚稀疏加法模型(SPAM)来拟合非线性数据,并进行相应的可视化分析。

本文提供了一个代码来设置、拟合和可视化加法模型。数值特征会自动使用样条基函数进行扩展。这个基本思想最早是由Ravikumar等人在2009年提出的,他们称之为SPAM,即稀疏加法模型。最初的提议涉及到组套索lasso惩罚,但grpreg的任何惩罚函数都可以代替。基本用法如下所示。


非线性数据:


image.png

dim(Data$X)
# [1] 1000   16

矩阵包含 16 个数字特征。

生成的对象是一个列表,其中包含扩展矩阵和分组分配,以及一些内部函数所需的元数据。使用具有三个自由度的自然三次样条曲线。

现在可以将扩展后的矩阵传递给 :grpreg()

fit <- grpreg

请注意,在这种情况下不必传递分组信息,因为分组信息包含在对象中。

plot_spline(fit,

偏残差也可包含在这些图中:

plot_splinpartial=TRUE)

image.png

点击标题查阅往期内容


R语言用GAM广义相加模型研究公交专用道对行程时间变异度数据的影响


01

02

03

04


默认情况下,这些图的居中值为 x(的平均值(其中 x表示正在绘制的特征)的平均值为零时,y值为零。另一种情况是,如果指定了plot_spline()x,则将绘制一幅纵轴代表模型预测值的曲线图,所有其他特征都固定为平均值:

plot_spline(fit, "V02, type='conditional')

在比较这两幅图时,请注意总体轮廓是相同的,唯一不同的是纵轴的值。下面是前 9 个系数的曲线图:

image.png

for (i in 1:9) ploline(fit

image.png

在生成模型中,变量 3 和 4 与结果呈线性关系,变量 1、2、5 和 6 呈非线性关系,而所有其他变量均不相关。稀疏加法模型很好地捕捉到了这一点。

进行交叉验证(默认情况下会绘制出使交叉验证误差最小的拟合结果):

cvfit <- cv.grp
plot_line

image.png

最后,这些工具还可用于生存模型和 glm 模型。在这里,所有绘图都以线性预测尺度返回,残差为偏差残差。

相关文章
|
4月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
4月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
4月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
58 3
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。