数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充

简介: 数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充

全文链接:https://tecdat.cn/?p=33055


员工满意度对于组织绩效和竞争力具有重要影响,因此准确了解员工满意度的影响因素和有效管理成为管理者的关键任务。而员工满意度调查是常用的研究方法之一,通过收集员工的反馈数据来了解他们的期望、需求和感受点击文末“阅读原文”获取完整代码数据


本文的目标是探讨使用R语言中的缺失值填充、lasso回归和贝叶斯分析方法来应对员工满意度调查数据中的缺失值。具体而言,我们将通过应用这些方法来处理一份实际的员工满意度调查数据查看文末了解数据免费获取方式,并比较它们在填充结果方面的差异和效果。此外,我们还将尝试使用lasso回归来选择和建立员工满意度的影响因素模型,并利用贝叶斯分析方法对模型进行修正和推断。


数据变量:


image.png

读取数据


dat <- read.spss("Non-Wser coutris eclUNJan .sav", to.data.
head(dat)

image.png

image.png

对缺失值进行填补


分别采用三种方法对空值进行处理:

(1)删除法

dat1=na.omit(dat)  
head(dat1)

(2)平均值补缺

dat2[index,i]=mean(na.omit(dat[,i]))

image.png

image.png

(3)多重补插法进行补缺。

# completeddat <- complete(tempdat,1)


变量筛选


xmat <-  model.matrix(  E2~ Organisation+Year+Population+Sector+V1+V10+

建立lasso模型


cv.aso <- cvglnet(xmat,   (at2.tain$E21:nrw(xmat)] )nfolds = 1


绘制误差

plot(cv.lasso)

image.png

点击标题查阅往期内容


群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化


01

02

03

04



coef(cv.lasso,s="lambda.1se")

image.png

根据lasso筛选出重要的变量


variables

image.png

贝叶斯bayes模型


Bayes(as.factor(E2) ~ ., data = dat2.train)

预测数据

head(prdct(del,datada.tain )$las)

image.png

相关文章
|
2月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
2月前
利用R语言进行典型相关分析实战
利用R语言进行典型相关分析实战
|
2月前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
2月前
R语言中缺失值的处理
R语言中缺失值的处理
14 0
|
2月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
机器学习/深度学习 算法
R语言分类回归分析考研热现象分析与考研意愿价值变现
R语言分类回归分析考研热现象分析与考研意愿价值变现
|
2月前
|
数据可视化 定位技术
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
|
2月前
|
机器学习/深度学习 数据可视化 算法
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为1
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
机器学习/深度学习 数据可视化 算法
R语言聚类分析、因子分析、主成分分析PCA农村农业相关经济指标数据可视化|数据分享
R语言聚类分析、因子分析、主成分分析PCA农村农业相关经济指标数据可视化|数据分享