数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充

简介: 数据代码分享|R语言lasso回归、贝叶斯分析员工满意度调查数据、缺失值填充

全文链接:https://tecdat.cn/?p=33055


员工满意度对于组织绩效和竞争力具有重要影响,因此准确了解员工满意度的影响因素和有效管理成为管理者的关键任务。而员工满意度调查是常用的研究方法之一,通过收集员工的反馈数据来了解他们的期望、需求和感受点击文末“阅读原文”获取完整代码数据


本文的目标是探讨使用R语言中的缺失值填充、lasso回归和贝叶斯分析方法来应对员工满意度调查数据中的缺失值。具体而言,我们将通过应用这些方法来处理一份实际的员工满意度调查数据查看文末了解数据免费获取方式,并比较它们在填充结果方面的差异和效果。此外,我们还将尝试使用lasso回归来选择和建立员工满意度的影响因素模型,并利用贝叶斯分析方法对模型进行修正和推断。


数据变量:


image.png

读取数据


dat <- read.spss("Non-Wser coutris eclUNJan .sav", to.data.
head(dat)

image.png

image.png

对缺失值进行填补


分别采用三种方法对空值进行处理:

(1)删除法

dat1=na.omit(dat)  
head(dat1)

(2)平均值补缺

dat2[index,i]=mean(na.omit(dat[,i]))

image.png

image.png

(3)多重补插法进行补缺。

# completeddat <- complete(tempdat,1)


变量筛选


xmat <-  model.matrix(  E2~ Organisation+Year+Population+Sector+V1+V10+

建立lasso模型


cv.aso <- cvglnet(xmat,   (at2.tain$E21:nrw(xmat)] )nfolds = 1


绘制误差

plot(cv.lasso)

image.png

点击标题查阅往期内容


群组变量选择、组惩罚group lasso套索模型预测新生儿出生体重风险因素数据和交叉验证、可视化


01

02

03

04



coef(cv.lasso,s="lambda.1se")

image.png

根据lasso筛选出重要的变量


variables

image.png

贝叶斯bayes模型


Bayes(as.factor(E2) ~ ., data = dat2.train)

预测数据

head(prdct(del,datada.tain )$las)

image.png

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
8天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
28 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。