用智谱 GLM-4大模型开发自己的IDEA插件

简介: V 哥建议研究大模型先从研究开放 API 开始,作为程序员的你觉对不是什么难事,通过研究 API 的过程中,可以让你更加了解大模型的原理,当然想要更深入的理解,需要对开源大模型的源码进行研究,根据个人的技术能力,量力而行。研究 API 是第一步,目前热招的岗位中,就有基于大模型开放 API 做应用开发的,大家可以在招聘站点上具体看看职位要求。

在大模型席卷世界的时代,不搞一搞大模型开发,作为一名程序员总觉得缺点什么,搞点啥呢,V哥就从搞一个自己的 IDEA 插件开始吧,就拿智谱清言GLM-4来说,在国内大模型中表现较为突出,具有较为均衡和全面的性能,在语言和知识等基础能力维度上可比肩GPT-4 Turbo。

GLM-4是智谱AI推出的新一代基座大模型,其API的上线为开发者提供了便捷高效地体验GLM-4模型的能力。以下是GLM-4 API的详细介绍与代码示例。

1、GLM-4 API 介绍

GLM-4模型的API提供了多种功能,包括但不限于文本生成、多模态处理、长文本理解和智能对话等。开发者可以通过API接入GLM-4模型,实现各种智能应用的开发。

特点

  • 支持长上下文:GLM-4模型支持128K的对话上下文。
  • 多模态能力:具备处理文本、图像等多种数据类型的多模态能力。
  • 快速推理和并发:支持更快的推理速度和更多的并发请求,降低了推理成本。
  • 智能体能力增强:增强了智能体(Agent)的能力,可以更好地理解和执行复杂任务。

优点:

  • 中文处理能力:GLM-4在处理中文文本方面表现出色,尤其适合中文场景的应用。
  • 性能提升:相比前一代GLM-3,GLM-4在性能上有显著提升,接近GPT-4的水平。
  • 个性化智能体:用户可以创建属于自己的智能体,实现大模型开发的个性化定制。
  • 多模态能力:GLM-4具备多模态能力,尤其在文生图方面表现突出。

应用场景

  • 智能客服:提供企业级的智能客服解决方案。
  • 内容创作:支持文本、图像等内容的创作和编辑。
  • 数据分析:处理和分析大量数据,提供决策支持。

学习方法步骤:

  • 熟悉模型特性:了解GLM-4的架构和新特性。
  • 接入API:通过智谱AI官网获取API访问权限。
  • 实践应用:利用GLM-4的API开发具体的应用程序或服务。
  • 分享和协作:通过智能体中心分享和协作,提升开发效率和模型应用范围。

代码示例

以下是一个使用Python调用GLM-4 API实现智能问答的简单示例,先来一个 Python 示例练练手。

# 首先,需要安装zhipuai包,可以使用pip进行安装
# pip install zhipuai

from zhipuai import ZhipuAI

# 使用您的API Key初始化ZhipuAI客户端
client = ZhipuAI(api_key="your_api_key")

# 准备要发送的消息,包含角色和内容
messages = [
    {
   "role": "user", "content": "你好,请问什么是机器学习?"}
]

# 调用GLM-4模型生成回答
response = client.chat.completions.create(
    model="glm-4",  # 指定要调用的模型
    messages=messages,  # 发送的消息列表
    temperature=0.9,  # 控制回答的创造性
    top_p=0.7,        # 控制回答的多样性
    stream=False,     # 是否使用流式调用
    max_tokens=150    # 最大生成的token数量
)

# 打印模型的回答
print(response.choices[0].message.content)

在这个示例中,我们首先导入了ZhipuAI类,并使用API Key创建了一个客户端实例。然后,我们准备了一个问题,并调用了chat.completions.create方法来获取GLM-4模型的回答。最后,我们打印出了模型生成的回答。

请注意,您需要替换your_api_key为您自己的API Key,并且遵守智谱AI的API使用条款和限制。您可以通过访问智谱AI的开放平台获取API Key和了解更多关于API的详细信息。

2、GLM-4 开放 API

GLM-4开放API提供了多种功能,使得开发者能够便捷高效地接入和使用GLM-4模型的强大能力。以下是GLM-4开放API的主要功能:

1. 长上下文支持:GLM-4模型可以处理长达128K的上下文,这意味着它可以理解和记忆更多的信息,从而在对话或任务中提供更连贯和准确的回应。

2. 多模态理解:GLM-4不仅支持文本,还能理解和生成图像,提供丰富的交互体验。这使得模型能够在视觉问题回答、图像描述、视觉定位等多模态理解任务上表现出色。

3. 快速推理和高并发:GLM-4模型支持更快的推理速度和更多的并发请求,这大大降低了推理成本,使得模型能够更高效地处理大量请求。

4. 智能体能力增强:GLM-4增强了智能体(Agent)的能力,能够根据用户意图自主理解、规划复杂指令,并自由调用不同的工具和大模型来完成复杂的任务。

5. 长文本处理能力:在“大海捞针”测试中,GLM-4展现了在长文本中的高准确度召回能力,这表明模型在处理大量文本信息时的精确性和可靠性。

6. 多角色对话系统:GLM-4支持多角色对话系统,通过增加“系统”和“工具”角色,引导大模型完成对话,提高了对话的可用性和灵活性。

7. 开放平台接入:所有开发者都可以通过智谱AI的开放平台接入GLM-4模型开放API,体验和利用GLM-4模型的能力。

8. 新用户激励:智谱AI为新注册登录的用户提供了500万Tokens的大礼包,以鼓励开发者体验和使用GLM-4模型。

9. 多语言能力:GLM-4在中文对齐能力上整体超过GPT-4,同时在英文任务上也展现出了强大的性能。

这些API功能为开发者提供了广泛的应用可能性,从教育、金融到医疗等各个领域,GLM-4模型的开放API都能够提供强大的支持和助力。开发者可以通过这些API构建各种智能应用,推动行业的创新和发展。

3、开发 IntelliJ IDEA 的Java插件

V哥这里提供一个概念性的指南和示例代码,以帮助你理解如何利用GLM-4大模型开发一个 IntelliJ IDEA 的Java插件。这个插件将是一个简单的代码生成工具,它可以根据用户的输入生成一些基本的Java代码。

实现逻辑

  • 创建插件项目:使用IntelliJ IDEA的插件开发向导创建一个新的插件项目。
  • 定义动作:创建一个动作,当用户触发时,将请求发送到GLM-4 API并显示生成的代码。
  • 调用GLM-4 API:使用HTTP客户端库(如OkHttp或Java内置的HttpClient)调用GLM-4 API,并传递用户的输入。
  • 处理响应:解析GLM-4 API的响应,并将生成的代码显示给用户。
  • 用户界面:提供一个简单的对话框,让用户输入他们想要生成的代码类型。

示例代码

以下是一个简化的示例,展示如何在IntelliJ IDEA插件中调用GLM-4 API:

import com.intellij.openapi.actionSystem.AnAction;
import com.intellij.openapi.actionSystem.AnActionEvent;
import com.intellij.openapi.ui.Messages;
import okhttp3.OkHttpClient;
import okhttp3.Request;
import okhttp3.Response;

import java.io.IOException;

public class GenerateCodeAction extends AnAction {
   

    @Override
    public void actionPerformed(AnActionEvent event) {
   
        // 假设你已经有了GLM-4的API密钥
        final String apiKey = "your_api_key_here";
        OkHttpClient client = new OkHttpClient();

        // 创建请求
        Request request = new Request.Builder()
                .url("https://open.bigmodel.cn/dev/api#glm-4") // 假设这是GLM-4 API的URL
                .addHeader("Authorization", "Bearer " + apiKey)
                .addHeader("Content-Type", "application/json")
                .post(RequestBody.create(jsonBody, MediaType.get("application/json")))
                .build();

        try {
   
            // 发送请求并获取响应
            Response response = client.newCall(request).execute();
            String responseBody = response.body().string();

            // 假设响应体是一个JSON字符串,包含生成的代码
            String generatedCode = parseGeneratedCode(responseBody);

            // 显示生成的代码
            Messages.showMessageDialog(event.getProject(), generatedCode, "Generated Code", Messages.getInformationIcon());
        } catch (IOException e) {
   
            e.printStackTrace();
            Messages.showMessageDialog(event.getProject(), "Error occurred while generating code", "Error", Messages.getErrorIcon());
        }
    }

    private String parseGeneratedCode(String responseBody) {
   
        // 解析响应体并提取生成的代码
        // 这里需要根据实际的API响应格式来解析
        // 以下是一个简化的示例
        return responseBody.replace("\"", "").trim();
    }

    private String jsonBody(String userInput) {
   
        // 根据用户输入构造JSON请求体
        return "{\"prompt\": \"" + userInput + "\", \"max_tokens\": 100, \"temperature\": 0.7}";
    }
}

在这个示例中,我们创建了一个GenerateCodeAction类,它继承自AnAction。当用户触发这个动作时,它会调用GLM-4 API并显示生成的代码。我们使用了OkHttp库来发送HTTP请求,并假设API的响应包含了生成的代码。然后我们解析这个响应并显示给用户。

注意事项

  • 你需要替换your_api_key_here为你的实际GLM-4 API密钥。
  • 你需要根据实际的GLM-4 API文档来调整URL和请求体的构造。
  • 你需要添加必要的依赖到你的插件项目中,例如OkHttp库。
  • 你需要在IntelliJ IDEA的插件开发环境中运行和测试你的插件。
  • 你需要确保你的API密钥和用户输入是安全的,并且遵循了GLM-4 API的使用条款。

这个示例提供了一个基本的框架,你可以根据实际需求进行扩展和完善。

4、最后

V 哥建议研究大模型先从研究开放 API 开始,作为程序员的你觉对不是什么难事,通过研究 API 的过程中,可以让你更加了解大模型的原理,当然想要更深入的理解,需要对开源大模型的源码进行研究,根据个人的技术能力,量力而行。研究 API 是第一步,目前热招的岗位中,就有基于大模型开放 API 做应用开发的,大家可以在招聘站点上具体看看职位要求。

相关文章
|
6月前
|
人工智能 API 数据库
MCP Server 开发实战 | 大模型无缝对接 Grafana
以 AI 世界的“USB-C”标准接口——MCP(Model Context Protocol)为例,演示如何通过 MCP Server 实现大模型与阿里云 Grafana 服务的无缝对接,让智能交互更加高效、直观。
1859 116
|
5月前
|
人工智能 自然语言处理 算法
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
394 0
AI智能混剪视频大模型开发方案:从文字到视频的自动化生成·优雅草卓伊凡
|
5月前
|
人工智能 缓存 JavaScript
通义灵码深度体验:AI编程助手如何提升全栈开发效率
通义灵码是一款强大的AI编程助手,支持从代码补全到智能体自主开发的全流程辅助。在React+Node.js项目中,其实现了100%字段匹配的Mongoose Schema生成;通过`@灵码`指令,30秒内完成天气查询CLI工具开发,包含依赖管理与文档编写。其上下文记忆能力可自动关联模块逻辑,如为商品模型扩展库存校验。集成MCP服务时,不仅生成基础代码,还推荐最佳实践并添加缓存优化。测试显示,其响应速度快、复杂任务准确率高,适合中小型项目快速迭代,初期开发效率提升约40%。尽管存在文档同步延迟和TypeScript支持不足的问题,仍是一款优秀的AI编程伙伴。
262 7
|
5月前
|
人工智能 监控 API
狂揽22.6k星!这个开源工具让你一键调用100+大模型,开发效率直接起飞!
LiteLLM是由BerriAI团队开发的开源项目,通过标准化OpenAI格式API接口,支持调用100+主流大语言模型(如OpenAI、Azure、Anthropic等)。其核心功能包括统一调用方式、企业级智能路由、异步流式响应及环境变量管理。项目适用于企业AI中台搭建、多模型对比测试、教育科研实验等场景。技术架构涵盖接口层、路由层、管理层与监控层,提供高效稳定的服务。相比LangChain、LlamaIndex等项目,LiteLLM在多平台混合开发方面优势显著。项目地址:https://github.com/BerriAI/litellm。
364 2
|
10天前
|
人工智能 Rust 并行计算
AI大模型开发语言排行
AI大模型开发涉及多种编程语言:Python为主流,用于算法研发;C++/CUDA优化性能;Go/Rust用于工程部署;Java适配企业系统;Julia等小众语言用于科研探索。
314 127
|
11天前
|
人工智能 自然语言处理 JavaScript
VTJ.PRO v0.13.29震撼发布!AI低代码引擎正式接入Qwen3-Coder-Plus,开发效率飙升!
VTJ.PRO v0.13.29 集成阿里云Qwen3-Coder-Plus大模型,实现自然语言生成Vue组件、源码双向同步与智能调试,大幅提升开发效率,推动低代码迈向智能化新时代。
83 0
|
6月前
|
人工智能 程序员 API
以人脸识别验票机为例,通义灵码如何助力嵌入式软硬件开发中的快速功能验证
本文分享通义灵码在嵌入式软硬件开发中的应用。通过实际案例——基于人脸识别的验票机开发,展示通义灵码如何助力快速原型验证。从时延、稳定性、准确率、安全性到成本效益,全面评估API性能。借助通义灵码,复杂编程任务得以简化,大幅提高开发效率,让开发者专注于更有价值的优化与测试工作。体验地址已提供,欢迎下载探索。
|
3月前
|
人工智能 持续交付 开发工具
AI大模型运维开发探索第五篇:GitOps 智能体
本文探讨了如何结合 Manus 的智能体设计理念与 GitOps 持续集成技术,构建低成本、高扩展性的智能体系统。通过借鉴 Manus 的沙箱机制与操作系统交互思路,利用 Git 作为智能体的记忆存储与任务调度核心,实现了推理过程可视化、自进化能力强的智能体架构。文章还分享了具体落地实践与优化经验,展示了其与 Manus 相当的功能表现,并提供了开源代码供进一步探索。
334 20
|
6月前
|
机器学习/深度学习 人工智能 并行计算
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?
AI部署架构:A100、H100、A800、H800、H20的差异以及如何选型?开发、测试、生产环境如何进行AI大模型部署架构?

热门文章

最新文章