Python网络编程之udp编程、黏包以及解决方案、tcpserver

简介: Python网络编程之udp编程、黏包以及解决方案、tcpserver

1、UDP协议编程

Hello,大家好我是景天,上一章我们聊打了Python网络编程,详细介绍了基于TCP协议的编程。TCP协议,每次都要经过三次握手才能建立连接,效率比较低。有没有更快的数据传输方式呢?

今天我们就一起谈谈UDP。

1.udp协议发送数据

udp与tcp基本一样,就是协议类型改下即可

udp第一次只能客户端发送数据,服务端接收到后,知道了客户端的ip和端口,服务端才能给客户端发数据

(1)UDP协议 服务端

import socket 

# 1.创建udp对象
sk = socket.socket(type=socket.SOCK_DGRAM)

# 2.在网络中注册该主机(绑定ip和端口号)
sk.bind( ("127.0.0.1",9000) )

# 3.收发数据的逻辑
"""udp协议下,默认第一次只能接收数据(没有三次握手,不清楚对方的ip和端口号)"""
# 接受数据
msg , addr  = sk.recvfrom(1024)
print(msg.decode())
print(addr)

# 发送数据
sk.sendto( "我喜欢你个锤子".encode()  , addr )

# 4.关闭连接
sk.close()

(2)UDP协议 客户端

import socket 

# 1.创建udp对象
sk = socket.socket(type=socket.SOCK_DGRAM)

# 2.收发数据的逻辑
# 发送数据
msg = "你喜欢我么~"
# sendto(  二进制字节流 , ip端口号  )
sk.sendto(   msg.encode() ,  ("127.0.0.1",9000) )

# 接受数据
msg , addr = sk.recvfrom(1024)
print(msg.decode())
print(addr)

# 3.关闭连接
sk.close()

(3)服务端详解:

#导入模块

import socket

#1.创建socket对象,协议类型用 type关键字来标识。udp的类型是socket.SOCK_DGRAM

udp_server = socket.socket(type=socket.SOCK_DGRAM)

#2.绑定ip和端口

udp_server.bind((“127.0.0.1”,9020))

#3.收发数据,udp是无连接的协议,不需要建立三次握手。第一次只能接收数据

“”“udp协议下,默认第一次只能接收数据(没有三次握手,不清楚对方的ip和端口号)”“”

#接收数据

msg , addr = udp_server.recvfrom(1024)

print(msg.decode())

print(addr)

#在取到客户端的ip和端口号之后,可以发送数据

udp_server.sendto( “我喜欢你个锤子”.encode() , addr )

#4.关闭连接

udp_server.close()

(4)客户端详解

#导入模块

import socket

#1.创建udp——socket对象

udp_client = socket.socket(type=socket.SOCK_DGRAM)

#2.发收数据

msg = “你喜欢我么~”

#sendto( 二进制字节流 , ip端口号 )

udp_client.sendto( msg.encode() , (“127.0.0.1”,9020) )

#接受数据

msg , addr = udp_client.recvfrom(1024)

print(msg.decode())

print(addr)

#3.关闭连接

udp_client.close()

客户端打印:

启用多个客户端:

可见,多个客户端都可以与服务端建立连接,不必等四次挥手断开连接。tcp服务端在与之前的客户端连接不断开的情况下,别人是无法连接上来的。upd可以

客户端打印

服务端默认先回复上次连接的客户端,input是个阻塞程序。服务端收到一个后,需要打字输入后,才能收到下一个客户端的消息

上一次发送消息是谁,服务端就把它的ip和端口号拿过来,回复过去

但凡涉及到聊天,聊天室,都采用udp协议

上传下载,保证数据不丢包采用tcp协议

2、tcp黏包

1.tcp协议在发送数据时,会出现黏包现象.

(1)数据粘包是因为在客户端/服务器的发送端和接收端都会有一个数据缓冲区,
缓冲区用来临时保存数据,默认空间都设置较大。在收发数据频繁时,由于tcp传输消息的无边界特点,不清楚应该截取多少长度,导致客户端/服务器端,都有可能把多条数据当成是一条数据进行截取,造成黏包

(2)发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个数据包。若连续几次发送的数据都很少,通常TCP会根据优化算法把这些数据合成一包后在发送,这样接收方就收到了粘包数据。

(3)接收方引起的粘包是由于接收方用户进程不及时接收数据,从而导致粘包现象。这是因为接收方先把收到的数据放在系统接缓冲区,用户进程从该缓冲区取数据,若下一个数据包到达时,上一个数据包尚未被用户进程取走,则系统可能把多条数据当成是一条数据进行截取

总结: TCP协议是面向连接的无边界协议

黏包现象一:
    在发送端,由于在缓冲区两个数据小,发送的时间隔短,TCP会根据优化算法把这些数据合成一个发送
    
黏包现象二:
    在接收端,由于在缓冲区没及时接受数据,截取数据时把多次发送的数据截取成一条,形成了黏包 

2.黏包对比:tcp和udp

#tcp协议:

缺点:接收时数据之间无边界,有可能粘合几条数据成一条数据,造成黏包

优点:不限制数据包的大小,稳定传输不丢包

#udp协议:

优点:接收时候数据之间有边界,传输速度快,不黏包

缺点:限制数据包的大小(受带宽路由器等因素影响),传输不稳定,可能丢包

#tcp和udp对于数据包来说都可以进行拆包和解包,理论上来讲,无论多大都能分次发送

但是tcp一旦发送失败,对方无响应(对方无回执),tcp可以选择再发,直到对应响应完毕为止

而udp一旦发送失败,是不会询问对方是否有响应的,如果数据量过大,易丢包

3.解决黏包问题

#解决黏包场景:

应用场景在实时通讯时,需要阅读此次发的消息是什么

#不需要解决黏包场景:

下载或者上传文件的时候,最后要把包都结合在一起,黏包无所谓.

模块 socketserver

#网络协议的最底层就是socket,基于原有socket模块,又封装了一层,就是socketserver

socketserver 为了实现tcp协议,server端的并发.

黏包现象:

(1)发送端,数据小,时间间隔短,造成黏包

(2)接收端,没有及时接受数据,可能把多次发送的数据当成一条截取.

案例。服务端分两次发型数据,发送的数据小,时间间隔较短。容易造成黏包。但是最新版的python3.11.2 多次发送时间短,也不会出现黏包

只有接收端,没有及时接收,才把多次发送的数据当成一条数据来接收

客户端收到时,如果接收不及时,会把两次发的,一次性收到打印出来,第二次接收没收到数据。第二次数据黏到第一次数据里面了

常规解决办法思路,多次发送数据时,加个时间间隔,但这种方法不可取,太耽误时间,影响程序运行速度

1.发送时,人为设置边界。第一步、先把要发送的数据大小发送过去。下面要发送的数据,都按这个长度截取。 第二步、发送真实的数据

接收时,第一步,先接受接下来要发送的数据的总大小 第二部,在接受真实的数据

可以解决黏包问题

但,我们每次发送的数据每次不一定一样,长度不一,不能能每次都去数

4.生产中,我们使用struct模块来解决黏包问题

struct 模块使用

基于 struct 模块–解决粘包问题的思路

先将真实的数据打包成固定长度的包;

先把固定长度的包发送过去;

接收后解包得到真实数据的长度;

接收真实数据

import struct

pack 打包

把任意长度数字转换成具有固定4个字节长度的字节流

unpack 解包

把4个字节长度的值恢复成原来的数字,返回元组

(1)pack

#i => int 要转换的当前类型是整型

pack()方法

pack()方法将任意长度的 数字 打包成新的数据,这个新数据的长度是固定。把任意长度数字转换成4个字节长度的字节流

pack()方法 第一个参数是数据格式,第二个参数是整数(数据的长度,转化成字节流后计算长度)

—返回值是一个新的字节流数据

使用pack长度也不是任意大,取值范围: -21亿~21亿左右 控制在1.8G之内 根据是int 32位机器的取值范围 2^31

MTU,链路层最大传输单元 最大1500

是包或帧的最大长度,一般以字节记。如果MTU过大,在碰到路由器时会被拒绝转发,因为它不能处理过大的包。

如果太小,因为协议一定要在包(或帧)上加上包头,那实际传送的数据量就会过小,这样也划不来。

大部分操作系统会提供给用户一个默认值,该值一般对用户是比较合适的。

res = struct.pack(“i” , 999999998)

print(res , len(res))

res = struct.pack(“i” , 1111111119)

print(res , len(res))

res = struct.pack(“i” , 3)

print(res , len(res))

res = struct.pack(“i” , 2000000000)

print(res , len(res))

把任意长度数据转换成4个字节长度的字节流。所以我们可以将数据打包,通过struct取其返回的长度,然后发送时按这个长度发送

struct.pack()返回的就是字节流,可以将任意长度的数据转换成4个字节长度的数据

(2)unpack

#i => 把对应的数据转化成整型

unpack()方法

unpack()方法将固定长度的 数字 解包成打包前数据真实的长度

unpack()方法 第一个参数是数据格式,第二个参数是 pack()方法打包后生成的新数据

返回值是一个元组,元祖中放着打包前数据真实的长度

tup = struct.unpack(“i” , res)

print(tup) #(2000000000,)

print(tup[0])

#解决黏包场景:

应用场景在实时通讯时,需要阅读此次发的消息是什么

#不需要解决黏包场景:

下载或者上传文件的时候,最后要把包都结合在一起,黏包无所谓.

这样,不论数据发送多长,struct都可以动态的取出其长度,打包成4个字节长度

接收时,先接收4个字节长度的数据,再接收真实数据。可以彻底解决黏包问题

服务端

客户端

3、socketserver模块

#网络协议的最底层就是socket,基于原有socket模块,又封装了一层,就是socketserver

socketserver 为了实现tcp协议,server端的并发. 内部实现是多线程

使用时,需要继承该模块中的方法

也可以使用udp:

1.server配置

#网络协议的最底层就是socket,基于原有socket模块,又封装了一层,就是socketserver

socketserver 为了实现tcp协议,server端的并发. 内部实现是多线程

import socketserver

class MyServer(socketserver.BaseRequestHandler):

#该方法名是固定的,不能变.系统自动调用。里面我们可以自定义收发数据的逻辑

def handle(self):

print(self.request)

print(self.client_address)

#实例化socketserver里面的ThreadingTCPServer类 ( ip端口号 , 自定义的类 )

server = socketserver.ThreadingTCPServer((“127.0.0.1”,8898),MyServer)

#调用内部相关函数,服务器一直运行

server.serve_forever()

继承父类,可以使用父类的构造方法

2.socketserver 与socket中的属性比较

self.request <=> conn tcp_server.accept()中的第一个返回值,新的套接字 等价 用来收发数据

self.client_address <=> addr (ip和端口)tcp_server.accept()中的第二个返回值

3.socketserver端口复用

#设置端口复用,更快释放端口

socketserver.TCPServer.allow_reuse_address = True

用了socketserver。服务端,只需要继承系统的类,不用自己创建socket对象。不用监听端口,端口复用,不用四次挥手,关闭套接字服务,这些都是继承的类完成

只需要实例化对象,绑定端口。

自己写收发逻辑即可

收发逻辑写在handle()方法里面,该方法继承了父类,方法名不能更改,系统自己调用

可以修改的点如下箭头指的地方:

客户端,服务端,收发数据必须交错,即是客户端要是先发,服务端就得先收。服务端先发,客户端就得先收

不能同时先收或先发

客户端发送

服务端接收

循环发收,以前通过socket,当服务端与客户端没有断开连接时,其他客户端不能再与服务端建立连接

现在通过socketserver可以实现,并发

可以同时添加多个客户端,而且都能接收到服务端发来的消息



相关文章
|
8天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
24 2
|
15天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
59 6
|
9天前
|
监控 安全
公司上网监控:Mercury 在网络监控高级逻辑编程中的应用
在数字化办公环境中,公司对员工上网行为的监控至关重要。Mercury 作为一种强大的编程工具,展示了在公司上网监控领域的独特优势。本文介绍了使用 Mercury 实现网络连接监听、数据解析和日志记录的功能,帮助公司确保信息安全和工作效率。
78 51
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
27 3
|
9天前
|
存储 安全 网络安全
云计算与网络安全:探索云服务中的信息安全挑战与解决方案
【10月更文挑战第33天】在数字化时代的浪潮中,云计算以其灵活性、可扩展性和成本效益成为企业数字化转型的核心动力。然而,随之而来的网络安全问题也日益突出,成为制约云计算发展的关键因素。本文将深入探讨云计算环境中的网络安全挑战,分析云服务的脆弱性,并提出相应的信息安全策略和最佳实践。通过案例分析和代码示例,我们将展示如何在云计算架构中实现数据保护、访问控制和威胁检测,以确保企业在享受云计算带来的便利的同时,也能够维护其信息系统的安全和完整。
|
13天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
|
16天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
39 4
|
16天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
38 1
|
15天前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
28 0