【视频】Python用GM(1,1)灰色模型预测模型对电力预测

简介: 【视频】Python用GM(1,1)灰色模型预测模型对电力预测

全文链接:http://tecdat.cn/?p=32561

分析师:Dongsheng Hang


负荷预测是电力系统的重要工作之一,对电力系统各个部门的工作都起着非常重要的作用点击文末“阅读原文”获取完整代码数据


科学准确的负荷预测可以让电力决策部门经济合理地安排发电机组的启停,调整线路的潮流,使其更加合理,提前制订设备的检修计划,从而确保电网在安全稳定运行的前提下,系统运行的经济效益也能得到很大的提高。本文重点介绍了GM (1,1)模型的基本理论和建模步骤,结合Python软件对数据的分析,得出了影响模型精度的主要因素,对模型的改进提供了可行性的建议,这对未来灰色理论模型的进一步研究具有十分重要的意义。


GM(1,1)灰色模型


灰色系统理论灰色系统理论与方法的核心是灰色动态模型,其特点是生成函数和灰色微分方程。灰色动态模型是以灰色生成函数概念为基础,以微分拟合为核心的建模方法,灰色系统理论认为:一切随机量都是在一定范围内、一定时段上变化的灰色量和灰过程,对于灰色量的处理不是寻求它的统计规律和概率分布,而是将杂乱无章的原始数据列,通过一定的方法处理,变成比较有规律的时间序列数据,即以数找数的规律,再建立动态模型。

对于原始数据以一定方法进行处理,其目的有二:一是为建立模型提供中间信息;二是将原始数据的波动性弱化。


点击标题查阅往期内容


灰色关联分析(Grey Relation Analysis,GRA)中国经济社会发展指标


01

02

03

04


模型构建


灰色系统理论是基于关联空间、光滑离散函数等概念定义灰导数与灰微分方程, 进而用离散数据列建立微分方程形式的动态模型,即灰色模型是利用离散随机数经过生成变为随机性被显著削弱而且较有规律的生成数,建立起的微分方程形式的模型,这样便于对其变化过程进行研究和描述。G表示grey(灰色),M表示model(模型)

定义灰导数为

d(k)=x(0)(k)=x(1)(k)一x(1)(k-1)

灰色预测模型适用范围、优缺点


适用范围:该模型使用的不是原始数据的序列,而是生成的数据序列。核心体系是Grey Model,即对原始数据作累加生成(或其他处理生成)得到近似的指数规律再进行建模的方法。

优点:在处理较少的特征值数据,不需要数据的样本空间足够大,就能解决历史数据少、序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律较强的生成序列。

缺点:只适用于中短期的预测,只适合近似于指数增长的预测。

电力负荷数据


定义GM(1,1)灰色模型


class GM11():
    def __init__(self):
        self.f = None
    def train(self, X0):
        X1 = X0.cumsum()
        Z = (np.array([-0.5 * (X1[k - 1] + X1[k]) for k in range(1, len(X1))])).reshape(len(X1) - 1, 1)
        # 数据矩阵A、B
        A = (X0[1:]).reshape(len(Z), 1)
        B = np.hstack((Z, np.ones(len(Z)).reshape(len(Z), 1)))


训练预测模型


model.train(X_train)  # 训练
    Y_pred = model.predict(len(X))  # 预测
    Y_train_pred = Y_pred[:len(X_train)]

模型检验结果


相关文章
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
46 5
|
1天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
16 4
|
5天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品价格预测的深度学习模型
使用Python实现智能食品价格预测的深度学习模型
29 6
|
4天前
|
数据采集 JSON 数据格式
深入解析:使用Python爬取Bilibili视频
本文介绍了如何使用Python编写脚本自动化下载Bilibili视频。通过requests等库获取视频和音频URL,使用ffmpeg合并音视频文件,最终实现高效下载。注意遵守网站爬虫政策和法律法规。
51 4
|
6天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品推荐系统的深度学习模型
使用Python实现智能食品推荐系统的深度学习模型
23 2
|
9天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
29 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
9天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
47 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品广告投放优化的深度学习模型
使用Python实现智能食品广告投放优化的深度学习模型
20 0
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
8天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
下一篇
无影云桌面