R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列

简介: R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列

金融风险是指由于经济活动的不确定性、市场环境的变化、决策的失误等因素的影响,导致实际回报与预期回报出现偏离的可能性。


VaR通过建立系统分析方法定量化分析风险,可以评估复杂的金融产品、反映风险的敏感,在合理的范围内规避风险,是量化市场风险行之有效的工具。文章将帮助客户采用风险价值VaR模型定量刻画风险,研究符合模型特点的求解方法,基于VaR模型对股价指数时间序列进行建模分析,科学评估风险的预期损失,避免由于高估或低估风险而带来投资的决策失误,从而对制定政策、维护市场稳定、监管金融机构等方面提供了必要保证。


解决方案


任务/目标

根据股票价格指数时间序列数据进行建模分析,对金融市场的波动进行分解与预测,比较不同估算方法的适用程度。

数据的处理与检验

以上海证券股价综合指数作为总体研究目标,选取2015年1月至2020年1月的每日收盘价序列作为样本数据集,共1220个价格数据构成金融时间序列,数据获取来源为上海证券交易所网站。

由于股票价格的非负性,我们采用取对数的方法处理上证综指的收盘价Ct,然后进行一阶差分,得到收益率序列Yt,再进行描述性分析与检验,计算公式如下:


基于 MCMC-GARCH 模型估计结果及检验


在本次实证分析中,利用 MCMC算法,随机生成两条马尔科夫链,分别对两条链进行抽样,以确保参数是从平稳分布中进行估计。

MCMC算法下所要拟合的GARCH(1,1)模型为:

利用贝叶斯MCMC 方法对 GARCH(1,1)模型进行未知参数估计。在随机抽样过程中,分别模拟了两条马尔科夫链。首先在R中进行迭代3000次,使用方差比法判断收敛效果,各个参数的方差比为,各个方差比均约为1,说明收敛情况良好。迭代轨迹图如图所示:


点击标题查阅往期内容


MATLAB随机波动率SV、GARCH用MCMC马尔可夫链蒙特卡罗方法分析汇率时间序列


01

02

03

04


利用上证综指收益率序列的后半部分数据对正态分布下MCMC-GARCH(1,1)模型的参数估计结果如下:

表 基于正态分布的MCMC--GARCH(1,1)模型系数的估计

  估计值 标准误 95%置信区间
α0 0.03338 0.01792 (0.01101,0.08155)
α1 0.09913 0.03522 (0.04546,0.18589)
β1 0.89197 0.03467 (0.81061,0.94656)

即MCMC-GARCH(1,1)模型的方差方程为:


分析比较


利用上证综指序列的后半部分样本数据分别对ML与MCMC方法的拟合误差进行度量,各指标的值如下:

 

ML与MCMC方法在样本期内的拟合误差度量指标

  MSE1 MSE2 MAE1 MAE2 QLIKE R²LN
ML 9.234095 5657.991 1.123257 11.74841 9.69528 0.5750861
MCMC 8.707486 5628.328 1.110572 11.85487 5.852641 -0.01556125

从上表可以看出,基于贝叶斯框架下MCMC算法得到各项拟合误差度量指标要小于极大似然估计方法得到的误差度量指标,说明MCMC-GARCH模型拟合效果要优于ML-GARCH模型得到的拟合结果,接下来对上证综指收益率标准化残差的自相关图,可以从图看出,标准化后的绝大部分残差序列值在置信区间内,对比图可以判断,MCMC-GARCH模型将样本序列中的异方差信息较完整的提取了出来,说明基于MCMC估计的GARCH模型效果更优。

MCMC-GARCH(1,1)模型平方残差自相关图


VaR 模型的建立与预测


又前文已知VaR模型的基本原理,记:

由上文所得,上证综指收益率序列后半部分数据的均值为0.005626654,所以得VaR模型为:

因此在ML和MCMC下分别为:

取上证综指收益率序列的后半部分数据对波动率序列进行预测,分别用ML-GARCH和MCMC-GARCH计算VaR,在95%的置信水平下得到如下值:

基于ML和MCMC方法的VaR值

  中位数 均值 标准差
ML 1.7016 1.9666 1.319663
MCMC 1.8348 2.3139 1.249384

通过上表可知,基于ML-GARCH和MCMC-GARCH计算的VaR值有一定的差别,基于MCMC-GARCH计算的VaR值更高、标准差更低。

两种方法拟合的时序图如下:

基于ML和MCMC方法的VaR时序图

相关文章
|
3月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
55 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
下一篇
DataWorks