R语言统计学DOE实验设计:用平衡不完全区组设计(BIBD)分析纸飞机飞行时间实验数据

简介: R语言统计学DOE实验设计:用平衡不完全区组设计(BIBD)分析纸飞机飞行时间实验数据

全文链接:http://tecdat.cn/?p=31010


平衡不完全区组设计(BIBD)是一个很好的研究实验设计,可以从统计的角度看各种所需的特征点击文末“阅读原文”获取完整代码数据


最近我们被客户要求撰写关于BIBD的研究报告,包括一些图形和统计输出。

对于一个BIBD有K个观测,重复r次实验。还有第5参数lamda,记录其中每对实验发生在设计块的数目。

生成一组BIBD设计,设计行列和每块的元素具体数目。如果BIBD(b,v,r,k)存在则 :1=v

我们设置区组

BIB(7,7, 4, 2)
##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    3    4    6    7  
## [3,]    1    2    4    6  
## [4,]    1    5    6    7  
## [5,]    2    4    5    7  
## [6,]    1    2    3    7  
## [7,]    1    3    4    5

这种设计不是BIBD,因为处理不是所有重复的设计都有相同的次数,我们可以通过isGUID检查。对于本例:

BIB(7,7, 4, 2)
##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    1    5    6    7  
## [3,]    2    4    5    7  
## [4,]    1    2    4    6  
## [5,]    1    2    3    7  
## [6,]    3    4    6    7  
## [7,]    1    3    4    5

然后,我们修改参数,来查看该模型是否生产BIBD

my.design
##      [,1] [,2] [,3]  
## [1,]    1    2    6  
## [2,]    2    3    7  
## [3,]    1    4    7  
## [4,]    3    4    6  
## [5,]    1    3    5  
## [6,]    2    4    5  
## [7,]    5    6    7
##  
## [1] The design is a balanced incomplete block design w.r.t. rows.

从结果来看,该设计是一个平衡不完全区组设计 。在这种情况下,我们能够生成有效BIBD实验使用指定的参数。


点击标题查阅往期内容


}MM_55IY@W3MKZ3A[0]1SH2.png

R语言因子实验设计nlme拟合非线性混合模型分析有机农业施氮水平

左右滑动查看更多

01

Y{F2YQ0R%YFHSQMLA)4O)JN.png

02

WWP1UCERPMT4QCFX`3@@ETA.png

03

JEZM{XFS_77GU%FDY{3[[[C.png

04

[I}B1]XX%X`SV{D4H}@HXCF.png



分析Box-Behnken设计

Box-Behnken设计的优良在于,可以将其应用于分析2至5个因子的实验。

下面将其扩展到回归模型的实验设计中,比如在下面的一个纸飞机的飞行时间的实验。这是另一个多种因子的实验,在四个变量。这些数据已经被编码。原始的变量是机翼面积A,翼状R,机身宽度W,和长度L , 在数据集中的每个观测代表的10次重复的的纸飞机在每个实验条件下的结果。我们在这里研究平均飞行时间 。

使用响应曲面法对变量进行回归模型拟合

相关视频

%OU}8V[U[8`)K~UIYEC{ZZ0.png

查看模型结果

summary(heli.rsm)
##  
## Call:  
## rsm(formula = ave ~ block + SO(x1, x2, x3, x4), data = heli)  
##  
##               Estimate Std. Error  t value  Pr(>|t|)     
## (Intercept) 372.800000   1.506375 247.4815 < 2.2e-16 ***  
## block2       -2.950000   1.207787  -2.4425 0.0284522 *   
## x1           -0.083333   0.636560  -0.1309 0.8977075     
## x2            5.083333   0.636560   7.9856 1.398e-06 ***  
## x3            0.250000   0.636560   0.3927 0.7004292     
## x4           -6.083333   0.636560  -9.5566 1.633e-07 ***  
## x1:x2        -2.875000   0.779623  -3.6877 0.0024360 **  
## x1:x3        -3.750000   0.779623  -4.8100 0.0002773 ***  
## x1:x4         4.375000   0.779623   5.6117 6.412e-05 ***  
## x2:x3         4.625000   0.779623   5.9324 3.657e-05 ***  
## x2:x4        -1.500000   0.779623  -1.9240 0.0749257 .   
## x3:x4        -2.125000   0.779623  -2.7257 0.0164099 *   
## x1^2         -2.037500   0.603894  -3.3739 0.0045424 **  
## x2^2         -1.662500   0.603894  -2.7530 0.0155541 *   
## x3^2         -2.537500   0.603894  -4.2019 0.0008873 ***  
## x4^2         -0.162500   0.603894  -0.2691 0.7917877     
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Multiple R-squared:  0.9555, Adjusted R-squared:  0.9078  
## F-statistic: 20.04 on 15 and 14 DF,  p-value: 6.54e-07  
##  
## Analysis of Variance Table  
##  
## Response: ave  
##                     Df  Sum Sq Mean Sq F value    Pr(>F)  
## block                1   16.81   16.81  1.7281  0.209786  
## FO(x1, x2, x3, x4)   4 1510.00  377.50 38.8175 1.965e-07  
## TWI(x1, x2, x3, x4)  6 1114.00  185.67 19.0917 5.355e-06  
## PQ(x1, x2, x3, x4)   4  282.54   70.64  7.2634  0.002201  
## Residuals           14  136.15    9.72                   
## Lack of fit         10  125.40   12.54  4.6660  0.075500  
## Pure error           4   10.75    2.69                   
##  
## Stationary point of response surface:  
##         x1         x2         x3         x4  
##  0.8607107 -0.3307115 -0.8394866 -0.1161465  
##  
## Stationary point in original units:  
##         A         R         W         L  
## 12.916426  2.434015  1.040128  1.941927  
##  
## Eigenanalysis:  
## $values  
## [1]  3.258222 -1.198324 -3.807935 -4.651963  
##  
## $vectors  
##          [,1]       [,2]       [,3]        [,4]  
## x1  0.5177048 0.04099358  0.7608371 -0.38913772  
## x2 -0.4504231 0.58176202  0.5056034  0.45059647  
## x3 -0.4517232 0.37582195 -0.1219894 -0.79988915  
## x4  0.5701289 0.72015994 -0.3880860  0.07557783

绘制拟合值的等高线图

contour(

K7OM`V46%`{M1X][F)L({X1.png

可视化结果

围绕拟合面,我们可以画出样本拟合点的位置。默认情况下,每个小区显示多个轮廓线的图像。可以看到,图中显示的不一定是等高线图的中心(默认可变范围是从数据中获得 );而是它设置在在坐标轴上的变量对应的值。因此,左上角的图中绘制了在x1和x2对应的拟合值,其中x3 =-0.839和x4=-0.116, 在固定的值,最大的就是该坐标X1 =0.861,X2=-0.331。


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
24天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
41 3
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
69 3

热门文章

最新文章