数据分享|R语言逐步回归、方差分析anova电影市场调查问卷数据可视化

简介: 数据分享|R语言逐步回归、方差分析anova电影市场调查问卷数据可视化

全文链接:http://tecdat.cn/?p=30680


这是一份有关消费者对电影市场看法及建议的调查报告,我们采取了问卷调查法,其中发放问卷256份,回收有效问卷200份点击文末“阅读原文”获取完整代码数据


我们对数据查看文末了解数据免费获取方式进行了基本分析,比如:相关性。还有基本图形、回归方差分析。最后模型比较。


读入数据


head(data)

数据的描述


str(data)

数据一共有200个样本,25个属性。具体属性和取值及其含义如下:

数据展示


绘制各个变量的饼图可以看到基本人口信息的各个取值的所占的百分比。

点击标题查阅往期内容


数据分享|数据视角可视化分析豆瓣电影评分爬虫数据


01

02

03

04

数据特性总结


基本统计量

数据准备


数据的清理

#数据清理
对缺失值(NA)的处理
data=na.omit(data)
 
#变量筛选
 colnames(data)
 
data=data[, -which(colnames(data) %in% c("填写时间","是否星标","提交后随机码" , "是否已

数据分析


基本数据分析,比如:相关性。还有基本图形、回归方差分析。最后模型比较。

数据检验

相关性

查看您对中国电影产业的发展建议和请问您看电影的主要目的是什么变量之间是否具有相关关系

检验的结果是,由于P =0.016<0.05,因此在0.05的显署性水平下,拒绝原假设,认为两者之间具有相关关系。

下面进行方差分析

m1<-aov(Q12.您一般通过什么途径购买电影票~Q9.请问您看电影的主要目的是什么,data=datacor)

由于p值大于0.05,从这个结果可以看出看电影的不同目下购买电影股票的差别不显著。

由于p值小于0.05,从这个结果可以看出看电影的不同目下购买电影股票的差别不显著。


回归分析


从回归模型的结果来看,可以看到接受电影票价格区间对被调查对象考虑的电影外在因素有比较大的影响,p值小于0.05,因此该变量对被调查者选择去看电影有显著的影响 。其次被调查者的年龄也有较明显的影响,可以年龄和被调查者去看电影有较大的负相关关系,因此可以认为年龄大的人会倾向于考虑的看电影各种外在因素。

plot(model)

从回归模型的残差结果图来看,残差比较均匀地分布在0线周围,和qq图周围,说明残差随机服从正态分布,因此,回归模型具有较好的效果。


模型的比较和讨论


模型筛选与比较,使用逐步回归进行模型筛选最优模型,然后和传统的回归模型进行比较。删去不显著的变量.

进行变量删减后的回归模型,我们得到最优变量是被调查者接受的电影票价格区间,p值小于0.05,说明该变量对被调查者考虑的外在因素有显著的影响。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
22天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
69 3