【python版CV】图像轮廓&模板匹配

简介: 【python版CV】图像轮廓&模板匹配

1、图像轮廓

1.1 findContours函数:
cv.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL:只检索最外面轮廓
  • RETR_CCOMP:检索所有轮廓,并将它们组织为两层;顶层是各部分的外部边界,第二层是空洞的边界
  • RETR_TREE:检索所有轮廓,并重构嵌套轮廓层次(常用)

method:轮廓逼近方法

  • RETR_LIST:检索所有轮廓,并将其保存到一条链表当中
  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点序列)
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是函数保留它们终点部分

为了更高的准确率,使用二值图像

image=cv.imread("E:\\Pec\\lan.jpg")
#转化为灰度图
gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY)
#转化为二值图
ret,thresh=cv.threshold(gray,127,255,cv.THRESH_BINARY)
#返回值一:计算好或者设定好的阈值
#返回值二:处理好的图像

1.2 获取轮廓信息(可能会报错原因)
#binary,contours,hierarchy=cv.findContours(,,)
#因为OpenCV库的更新,会报错“not enough values to unpack (expected 3, got 2)”
#把返回值从三个改成两个即可(删除第一个返回值)
contours,hierarchy=cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_NONE)
#返回值一:轮廓信息
#返回值二:层级


1.4 轮廓特征:
#轮廓特征
cnt=contours[0]#第0个轮廓
#面积
area=cv.contourArea(cnt)
print(area)
#周长,True表示闭合的轮廓图像
girth=cv.arcLength(cnt,True)
print(girth)
1.5 轮廓近似:

说明:曲线AB,假设C点是到直接AB最大的点,然后过C点做直线AB的垂直线d,若d点小于T(自己设置的阈值),直线AB可以取代曲线AB,若d大于T,不能取代,则同理在曲线CB取一点D,做D到直线CB的曲线,然后再比较阈值。。。。。

#轮廓近似
#二值图获取
img=cv.imread("E:\\Pec\\lunk.jpg")
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(gray,127,255,cv.THRESH_BINARY)
#获取轮廓
contours,hierarchy=cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_NONE)
cnt=contours[2]
draw_img=img.copy()
res=cv.drawContours(draw_img,contours,-1,(0,255,0),5)
cv_show("res",res)
#取近似
epsilon=0.15*cv.arcLength(cnt,True)#设置的比较阈值,一般是周长的百分比
#百分比越小,变化越不明显
approx=cv.approxPolyDP(cnt,epsilon,True)#做近似
draw_img=img.copy()
res=cv.drawContours(draw_img,[approx],-1,(0,0,255),2)
cv_show("res",res)
1.6 边界矩形
img=cv.imread("E:\\Pec\\lunk.jpg")
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(gray,127,255,cv.THRESH_BINARY)
contours,hierarchy=cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_NONE)
cnt=contours[3]
x,y,w,h=cv.boundingRect(cnt)
image=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show("image",image)

2、模板匹配

说明:模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv中有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。如原图形是AxB大小,而模板是axb大小,则输出结果是(A-a+1)x(B-b+1)

6种差别程度的计算方法:(尽量用归一化)

TM_SQDIFF:计算平方不同,计算出来的值越小,越相关

TM_CCORR:计算相关性,计算出来的值越大,越相关

TM_CCOEFF:计算相关系数,计算出来的值越大,越相关

TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关

TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关

  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
#模板匹配
img=cv.imread("E:\\Pec\\lida.jpg",0)
template=cv.imread("E:\\Pec\\face.jpg",0)
#cv_show("lida",img)
#cv_show("tem",template)
h,w=template.shape[:2]
print(img.shape)
print(template.shape)
methods=['cv.TM_CCOEFF','cv.TM_CCORR','cv.TM_CCOEFF','cv.TM_SQDIFF_NORMED'
    ,'cv.TM_CCORR_NORMED','cv.TM_CCOEFF_NORMED']
#进行模板匹配
res=cv.matchTemplate(img,template,3)
#第三个参数是一个数值,1对应上面的TM_CCOEFF,同理下面
print(res.shape)
min_val,max_val,min_loc,max_loc=cv.minMaxLoc(res)
print(min_val)#最小值
print(max_val)#最大值
print(min_loc)#最小值位置
print(max_loc)#最大值位置

for meth in methods:
    img2=img.copy()
    #匹配方法的真值
    method=eval(meth)#eval函数是以字符串的形式运行代码,如a1,a2...分别赋予1,2..
    print(method)
    res=cv.matchTemplate(img,template,method)
    min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
    #如果是平方差匹配TM_SQDIFF或者归一化平方差匹配,取最小值
    if method in [1,4]:
        top_left=min_loc
    else:
        top_left=max_loc
    bottom_right=(top_left[0]+w,top_left[1]+h)
    #画矩形
    cv.rectangle(img2,top_left,bottom_right,255,2)
    #位置由三个整型数值构成:第一个代表行数,第二个代表列数,第三个代表索引位置。
    #举例:plt.subplot(2, 3, 5) 和plt.subplot(235) 一样。
    plt.subplot(121),plt.imshow(res)
    plt.xticks([]),plt.yticks([])#隐藏坐标轴
    plt.subplot(122),plt.imshow(img2)
    plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
    plt.suptitle(meth)
    plt.show()

(255, 255)
(146, 153)
(110, 103)
0.7732675671577454
0.9017052054405212
(8, 109)
(67, 35)
4
2
4
1
3
5

匹配多个对象:

python zip()函数:

zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。zip(*loc[::-1])

img_jb1=cv.imread("E:\\Pec\\jinbi1.jpg")
#cv_show("res",img_jb1)
img_jb2=cv.imread("E:\\Pec\\jinbi2.jpg")
#cv_show("res",img_jb2)
h,w=img_jb2.shape[:2]
res=cv.matchTemplate(img_jb1,img_jb2,cv.TM_CCOEFF_NORMED)
#取匹配度大于80%的坐标
threshold=0.7
loc=np.where(res>threshold)
for pt in zip(*loc[::-1]): #*表示可选参数
    bootom_right=(pt[0]+w,pt[1]+h)
    cv.rectangle(img_jb1,pt,bootom_right,(0,255,0),2)
cv_show("jb",img_jb1)

3、图像金字塔

  • 高斯金字塔
  • 拉普拉斯金字塔
3.1 高斯金字塔

(1)向下采样方法(缩小)

  • 将Gi与高斯内核卷积
  • 将所有偶数行和列去除,两边各缩小一半,面积缩小四分之一
down=cv.pyrDown(image)
#cv_show("down",down)

(2)向上采样方法(放大)

  • 将图像在每个方向扩大到原来的两倍,新增的行和列以0填充
  • 使用先前同样的内核(乘以4)与放大后的图像卷积,获取近似值
up=cv.pyrUp(image)
#cv_show("up",up)
 
3.2 拉普拉斯金字塔

Li=Gi−PyrUp(PyrDown(Gi))

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
程序员 Linux Python
python中模板和包的使用
本文介绍了 Python 模块和包的基本概念及使用方法。模块是 Python 程序结构的核心,每个以 `.py` 结尾的源文件都是一个模块,包含可重用的代码。文章详细讲解了模块的导入方式(如 `import` 和 `from...import`),模块的搜索顺序,以及如何创建和发布自己的模块。此外,还介绍了包的概念,包是包含多个模块的特殊目录,并通过 `__init__.py` 文件定义对外提供的模块列表。最后,文章简述了如何使用 `pip` 工具管理第三方模块的安装与卸载。作者:大石头的笔记;来源:稀土掘金。
|
2月前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
57 4
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
91 3
|
4月前
|
JSON API 数据格式
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
103 0
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
|
4月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
159 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
5月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
183 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
6月前
|
机器学习/深度学习 算法 机器人
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
119 0
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
|
6月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
137 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow

热门文章

最新文章

推荐镜像

更多