【python版CV】图像轮廓&模板匹配

简介: 【python版CV】图像轮廓&模板匹配

1、图像轮廓

1.1 findContours函数:
cv.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL:只检索最外面轮廓
  • RETR_CCOMP:检索所有轮廓,并将它们组织为两层;顶层是各部分的外部边界,第二层是空洞的边界
  • RETR_TREE:检索所有轮廓,并重构嵌套轮廓层次(常用)

method:轮廓逼近方法

  • RETR_LIST:检索所有轮廓,并将其保存到一条链表当中
  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点序列)
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是函数保留它们终点部分

为了更高的准确率,使用二值图像

image=cv.imread("E:\\Pec\\lan.jpg")
#转化为灰度图
gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY)
#转化为二值图
ret,thresh=cv.threshold(gray,127,255,cv.THRESH_BINARY)
#返回值一:计算好或者设定好的阈值
#返回值二:处理好的图像

1.2 获取轮廓信息(可能会报错原因)
#binary,contours,hierarchy=cv.findContours(,,)
#因为OpenCV库的更新,会报错“not enough values to unpack (expected 3, got 2)”
#把返回值从三个改成两个即可(删除第一个返回值)
contours,hierarchy=cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_NONE)
#返回值一:轮廓信息
#返回值二:层级


1.4 轮廓特征:
#轮廓特征
cnt=contours[0]#第0个轮廓
#面积
area=cv.contourArea(cnt)
print(area)
#周长,True表示闭合的轮廓图像
girth=cv.arcLength(cnt,True)
print(girth)
1.5 轮廓近似:

说明:曲线AB,假设C点是到直接AB最大的点,然后过C点做直线AB的垂直线d,若d点小于T(自己设置的阈值),直线AB可以取代曲线AB,若d大于T,不能取代,则同理在曲线CB取一点D,做D到直线CB的曲线,然后再比较阈值。。。。。

#轮廓近似
#二值图获取
img=cv.imread("E:\\Pec\\lunk.jpg")
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(gray,127,255,cv.THRESH_BINARY)
#获取轮廓
contours,hierarchy=cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_NONE)
cnt=contours[2]
draw_img=img.copy()
res=cv.drawContours(draw_img,contours,-1,(0,255,0),5)
cv_show("res",res)
#取近似
epsilon=0.15*cv.arcLength(cnt,True)#设置的比较阈值,一般是周长的百分比
#百分比越小,变化越不明显
approx=cv.approxPolyDP(cnt,epsilon,True)#做近似
draw_img=img.copy()
res=cv.drawContours(draw_img,[approx],-1,(0,0,255),2)
cv_show("res",res)
1.6 边界矩形
img=cv.imread("E:\\Pec\\lunk.jpg")
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(gray,127,255,cv.THRESH_BINARY)
contours,hierarchy=cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_NONE)
cnt=contours[3]
x,y,w,h=cv.boundingRect(cnt)
image=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show("image",image)

2、模板匹配

说明:模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv中有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。如原图形是AxB大小,而模板是axb大小,则输出结果是(A-a+1)x(B-b+1)

6种差别程度的计算方法:(尽量用归一化)

TM_SQDIFF:计算平方不同,计算出来的值越小,越相关

TM_CCORR:计算相关性,计算出来的值越大,越相关

TM_CCOEFF:计算相关系数,计算出来的值越大,越相关

TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关

TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关

  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
#模板匹配
img=cv.imread("E:\\Pec\\lida.jpg",0)
template=cv.imread("E:\\Pec\\face.jpg",0)
#cv_show("lida",img)
#cv_show("tem",template)
h,w=template.shape[:2]
print(img.shape)
print(template.shape)
methods=['cv.TM_CCOEFF','cv.TM_CCORR','cv.TM_CCOEFF','cv.TM_SQDIFF_NORMED'
    ,'cv.TM_CCORR_NORMED','cv.TM_CCOEFF_NORMED']
#进行模板匹配
res=cv.matchTemplate(img,template,3)
#第三个参数是一个数值,1对应上面的TM_CCOEFF,同理下面
print(res.shape)
min_val,max_val,min_loc,max_loc=cv.minMaxLoc(res)
print(min_val)#最小值
print(max_val)#最大值
print(min_loc)#最小值位置
print(max_loc)#最大值位置

for meth in methods:
    img2=img.copy()
    #匹配方法的真值
    method=eval(meth)#eval函数是以字符串的形式运行代码,如a1,a2...分别赋予1,2..
    print(method)
    res=cv.matchTemplate(img,template,method)
    min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
    #如果是平方差匹配TM_SQDIFF或者归一化平方差匹配,取最小值
    if method in [1,4]:
        top_left=min_loc
    else:
        top_left=max_loc
    bottom_right=(top_left[0]+w,top_left[1]+h)
    #画矩形
    cv.rectangle(img2,top_left,bottom_right,255,2)
    #位置由三个整型数值构成:第一个代表行数,第二个代表列数,第三个代表索引位置。
    #举例:plt.subplot(2, 3, 5) 和plt.subplot(235) 一样。
    plt.subplot(121),plt.imshow(res)
    plt.xticks([]),plt.yticks([])#隐藏坐标轴
    plt.subplot(122),plt.imshow(img2)
    plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
    plt.suptitle(meth)
    plt.show()

(255, 255)
(146, 153)
(110, 103)
0.7732675671577454
0.9017052054405212
(8, 109)
(67, 35)
4
2
4
1
3
5

匹配多个对象:

python zip()函数:

zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。zip(*loc[::-1])

img_jb1=cv.imread("E:\\Pec\\jinbi1.jpg")
#cv_show("res",img_jb1)
img_jb2=cv.imread("E:\\Pec\\jinbi2.jpg")
#cv_show("res",img_jb2)
h,w=img_jb2.shape[:2]
res=cv.matchTemplate(img_jb1,img_jb2,cv.TM_CCOEFF_NORMED)
#取匹配度大于80%的坐标
threshold=0.7
loc=np.where(res>threshold)
for pt in zip(*loc[::-1]): #*表示可选参数
    bootom_right=(pt[0]+w,pt[1]+h)
    cv.rectangle(img_jb1,pt,bootom_right,(0,255,0),2)
cv_show("jb",img_jb1)

3、图像金字塔

  • 高斯金字塔
  • 拉普拉斯金字塔
3.1 高斯金字塔

(1)向下采样方法(缩小)

  • 将Gi与高斯内核卷积
  • 将所有偶数行和列去除,两边各缩小一半,面积缩小四分之一
down=cv.pyrDown(image)
#cv_show("down",down)

(2)向上采样方法(放大)

  • 将图像在每个方向扩大到原来的两倍,新增的行和列以0填充
  • 使用先前同样的内核(乘以4)与放大后的图像卷积,获取近似值
up=cv.pyrUp(image)
#cv_show("up",up)
 
3.2 拉普拉斯金字塔

Li=Gi−PyrUp(PyrDown(Gi))

相关文章
|
12天前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
|
12天前
|
前端开发 JavaScript 数据库
python Django教程 之模板渲染、循环、条件判断、常用的标签、过滤器
python Django教程 之模板渲染、循环、条件判断、常用的标签、过滤器
|
23天前
|
机器学习/深度学习 人工智能 算法
【深度学习】python之人工智能应用篇——图像生成技术(二)
图像生成是计算机视觉和计算机图形学领域的一个重要研究方向,它指的是通过计算机算法和技术生成或合成图像的过程。随着深度学习、生成模型等技术的发展,图像生成领域取得了显著的进步,并在多个应用场景中发挥着重要作用。
32 9
|
1月前
|
数据采集 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索20页论文及Python代码
本文介绍了2024年泰迪杯B题的解决方案,该题目要求构建基于多模态特征融合的图像文本检索模型和算法,通过深入分析和预处理数据集,构建了OFA、BertCLIP和ChineseCLIP三种多模态特征融合模型,并通过投票融合机制优化检索效果,实验结果表明所提模型在图像与文本检索任务中显著提高了检索准确性和效率。
24 2
|
1月前
|
机器学习/深度学习 XML 搜索推荐
图像自动化保存工具:Python脚本开发指南
图像自动化保存工具:Python脚本开发指南
WK
|
10天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
如何使用Python识别图像?
在Python中识别图像涉及计算机视觉和图像处理技术。常用库包括OpenCV,用于基础图像处理和计算机视觉任务;Pillow则适用于基本图像操作。对于复杂图像识别,如对象检测和分类,可采用TensorFlow等深度学习框架。首先,通过`pip install opencv-python`安装OpenCV,然后使用其读取、显示图像及转换颜色空间等功能。
WK
12 0
|
1月前
|
定位技术 Python
【python】python基于pygame坦克大战游戏设计(源码+图像+操作说明)【独一无二】
【python】python基于pygame坦克大战游戏设计(源码+图像+操作说明)【独一无二】
|
17天前
|
JavaScript Java Python
【Azure 应用服务】在Azure App Service for Windows 中部署Java/NodeJS/Python项目时,web.config的配置模板内容
【Azure 应用服务】在Azure App Service for Windows 中部署Java/NodeJS/Python项目时,web.config的配置模板内容
|
4天前
|
数据采集 机器学习/深度学习 数据挖掘
探索Python编程之美:从基础到进阶
【9月更文挑战第4天】在数字时代的浪潮中,编程已成为一种新兴的“超能力”。Python,作为一门易于上手且功能强大的编程语言,正吸引着越来越多的学习者。本文将带领读者走进Python的世界,从零基础出发,逐步深入,探索这门语言的独特魅力和广泛应用。通过具体代码示例,我们将一起解锁编程的乐趣,并理解如何利用Python解决实际问题。无论你是编程新手还是希望提升技能的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
|
3天前
|
存储 开发者 Python
探索Python编程之美
【9月更文挑战第5天】在这篇文章中,我们将一起踏上一场Python编程的奇妙之旅。从基础语法到高级特性,我们将一步步揭开Python语言的神秘面纱。你将学习如何编写清晰、高效的代码,掌握函数、类和模块的使用,以及理解面向对象编程的核心概念。此外,我们还将探讨异常处理、文件操作等实用技能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供宝贵的知识和技巧,让你在编程的道路上更加从容自信。
下一篇
DDNS