【LLMOps】Paka:大模型管理应用平台部署实践

简介: 【4月更文挑战第11天】Paka大模型管理及应用平台介绍

[toc]


简介

paka 是一种多功能的 LLMOps 工具,只需一个命令即可简化大型语言模型 (LLM) 应用的部署和管理。

一、核心优势

  • 与云无关的资源预置:Paka 首先打破了云供应商锁定的障碍,目前支持 EKS,并计划扩展到更多云服务。
  • 优化模型执行:paka 专为提高效率而设计,可在 CPU 和 Nvidia GPU 上运行 LLM 模型,确保最佳性能。根据 CPU 使用率、请求速率和延迟自动扩展模型副本。
  • 可扩展的批处理作业管理:paka 擅长管理动态横向扩展和横向扩展的批处理作业,无需人工干预即可满足不同的工作负载需求。
  • 无缝应用程序部署:paka 支持将 Langchain 和 LlamaIndex 应用程序作为函数运行,提供零和备份的可扩展性,以及滚动更新以确保不会停机。
  • 全面的监控和跟踪:嵌入了对通过 Prometheus 和 Grafana 收集指标的内置支持,以及通过 Zipkin 进行跟踪。

1.运行时推理 : 当前的运行时推理是通过出色的 llama.cpp 和 llama-cpp-python 项目完成的。vLLM 支持即将推出。每个模型都在单独的模型组中运行。每个模型组都可以有自己的节点类型、副本和自动缩放策略。

2.无服务化容器 : 使用 knative 将应用程序部署为无服务器容器。但是,用户也可以将其应用程序部署到原生云产品,例如 Lambda、Cloud Run 等。

3.并行执行:可以为 celery 作业配置可选的 redis 代理。作业工作人员会根据队列长度自动缩放。

4.向量数据库:向量存储是用于存储嵌入的键值存储。Paka 支持配置 qdrant。

5.监控:Paka 内置了对监控和跟踪的支持。指标是通过 Prometheus 和 Grafana 收集的,跟踪是通过 Zipkin 完成的。用户还可以启用 Prometheus Alertmanager 进行警报。

6.持续化部署:Paka 支持通过滚动更新进行持续部署,以确保不会停机。应用程序可以构建,推送到容器注册表,并使用单个命令进行部署。

7.构建:应用程序、作业代码是使用 buildpack 构建的。无需编写 Dockerfile。但是,用户仍然需要安装 docker 运行时。

二、部署使用

1.安装paka

pip install paka

2.构建集群配置文件

aws:
  cluster:
    name: example
    region: us-west-2
    nodeType: t2.medium
    minNodes: 2
    maxNodes: 4
  modelGroups:
    - nodeType: c7a.xlarge
      minInstances: 1
      maxInstances: 3
      name: llama2-7b
      resourceRequest:
        cpu: 3600m
        memory: 6Gi
      autoScaleTriggers:
        - type: cpu
          metadata:
            type: Utilization
            value: "50"

3.构建集群

paka cluster up -f cluster.yaml -u

4.部署应用

创建Profile文件和.cnignore文件,在 Procfile 中,添加用于启动应用程序的命令。例如,对于 flask 应用程序,它将是 web: gunicorn app:app。 在 .cnignore 中,添加要在生成过程中忽略的文件。

若要固定语言运行时的版本,请添加带有版本号的runtime.txt文件。例如,对于 python,它可以是 python-3.11.*。

对于 python 应用程序,需要 requirements.txt 文件。

要部署应用程序,请运行 'paka function deploy --name --source --entrypoint 。例如:

paka function deploy --name langchain-server --source . --entrypoint serve

5.销毁集群

paka cluster down -f cluster.yaml

小节

本节我们介绍了paka以及paka的使用,Paka 使用单命令方法简化了大型语言模型 (LLM) 应用程序的部署和管理,为大语言模型的开发和部署,管理提供了更好的管理方式,本节只对paka作了简单介绍,后面我们会逐步深入学习。

小编是一名热爱人工智能的专栏作者,致力于分享人工智能领域的最新知识、技术和趋势。这里,你将能够了解到人工智能的最新应用和创新,探讨人工智能对未来社会的影响,以及探索人工智能背后的科学原理和技术实现。欢迎大家点赞,评论,收藏,让我们一起探索人工智能的奥秘,共同见证科技的进步!

目录
相关文章
|
25天前
|
人工智能 监控 Serverless
云应用开发平台CAP产品评测
本文介绍了在使用 CAP 之前用户的背景情况,CAP 相比同类产品的优劣势,以及在 AI 应用全生命周期管理中未覆盖的环节和改进建议。CAP 在易用性、性能、集成性和安全性方面表现出色,但在生态系统、社区支持和跨平台兼容性方面存在不足。此外,模型评估优化、成本监控和合规性管理等方面也有待加强。建议加强文档维护和版本兼容性测试,提升用户体验。
54 4
|
1月前
|
人工智能 安全 Serverless
云应用开发平台CAP 测评
云应用开发平台CAP 测评
29 1
|
28天前
|
人工智能 监控 数据挖掘
CAP 快速部署项目体验评测
本文介绍了使用CAP(云应用平台)的体验,涵盖模板选择与部署、性能测试与监控、二次开发与调试等方面。作者选择了RAG模板并成功部署,通过性能测试验证了应用的稳定性,进行了二次开发并提出改进建议。CAP在模板库丰富度、产品引导与功能满足度等方面表现良好,但在实时数据分析和定制化方面仍有提升空间。总体而言,CAP是一个强大的云应用开发平台,适合快速构建和管理应用。
56 19
|
28天前
|
自然语言处理 监控 搜索推荐
云应用开发平台CAP评测
在体验过程中,我选择了 RAG 模板。部署整体顺畅,CAP 平台提供了一键部署功能,简化了配置步骤。但也遇到了环境依赖、模型加载速度和网络配置等挑战。性能测试显示响应速度较快,高并发表现稳定。CAP 的监控面板直观,弹性策略灵活。在 RAG 模板基础上,我使用 Flask 和 Vue 进行了二次开发,调试顺利,功能正常运行。建议 CAP 增加 NLP、推荐系统、IoT 应用和开源项目集成等模板,以丰富模板库。
35 1
|
30天前
|
自然语言处理 监控 测试技术
CAP 快速部署项目体验评测
我选择了RAG模板进行部署,CAP的部署流程简洁,仅需几步即可完成。在使用自定义数据集时遇到数据格式问题,但通过文档和社区支持得以解决。性能测试显示系统响应迅速、稳定,监控配置直观易用。基于模板,我使用Flask进行了二次开发,调试顺利,最终实现预期功能。CAP的模板库丰富,涵盖多种AI应用场景,建议增加更多热门场景如NLP聊天机器人和TensorFlow/PyTorch集成模板,以提升灵活性和吸引力。
|
1月前
|
人工智能 监控 测试技术
云应用开发平台CAP测评报告
云应用开发平台CAP测评报告
|
1月前
|
人工智能 Docker 容器
一、轻松部署的大模型开发平台dify.ai
一、轻松部署的大模型开发平台dify.ai
96 0
|
监控 算法
转:BF算法对于文档管理软件的运用优势
BF算法(布隆过滤器算法)在文档管理软件中的应用场景包括: 1. 窗口列表查询:文档管理软件可以通过BF算法来查询当前所有的窗口列表,并根据需要对窗口进行筛选、排序、过滤等操作。 2. 窗口状态监测:文档管理软件可以利用BF算法对每个窗口进行哈希计算,将哈希值存入布隆过滤器中,从而能够快速判断窗口是否处于激活状态或者是否发生了变化。 3. 窗口内容监控:文档管理软件可以使用BF算法对窗口的内容进行哈希计算,并将哈希值存入布隆过滤器中,从而能够快速判断窗口内容是否发生了变化。
86 0
|
人工智能 机器人 Linux
阿里云RPA(机器人流程自动化)干货系列之四:阿里云RPA产品架构
导读:本文是阿里云RPA(机器人流程自动化)干货系列之四,详细介绍了阿里云RPA产品架构和技术架构(包括客户端和服务端)等。
7763 0
|
数据采集 存储 缓存
「应用架构」 EA874系列:企业应用集成概述
「应用架构」 EA874系列:企业应用集成概述